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A slight ordering of my interior begins
to take place and I need nothing more,
for disorder is the worst thing in small
talents

Eine kleine Ordnung meines Innern
fängt an sich herzustellen und nichts
brauche ich mehr, denn Unordnung bei
kleinen Fähigkeiten ist das Ärgste

Franz Kafka
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Preface 
 
 
 

The following pages draw together, in the simplest and deftest way 
possible, the mathematical methods necessary for a first encounter 
with university-level science. The book is conceived of as an intro-
duction to mathematics and logic for undergraduate students. It does 
not presuppose prior knowledge of mathematics or logic. However, it 
is strongly recommended that the mathematical chapters are studied 
consecutively. The chapters on logic can be read independently, be-
ginning with propositional logic and ending with predicate logic. The 
section on mathematics is mainly organized according to subtle varia-
tions of Pythagoras’ theorem across several topics such as analytic 
geometry, trigonometry, and calculus. The section on logic follows 
the traditional path of a transition from propositional to predicate log-
ic, emphasizing the mechanical aspects of classical logical calculation.  
 The poetics of this textbook was inspired by Alistair C. Crombie 
and Ian Hacking’s styles of scientific reasoning. I have tried to im-
plement a mathematical style of reasoning that does not necessarily 
require long detailed explanations, using natural language. My as-
sumption is that only a few elements of mathematical and logical rea-
soning are truly necessary to develop basic understanding. Students 
interested in expanding their knowledge further should consult the 
bibliography at the end of the book. 
 
 
General Objectives of the Teaching Material 
 
The principal objective of the book is to provide support for mathe-
matical thinking and logic. It is geared towards introducing beginning 
students to mathematical and logical tools, developing their capacities 
for analytical thought and independent learning; and preparing them 
to confront the complexities of scientific knowledge.  
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Learning Objectives for the Development of Skills and Compe-
tencies 
 
It is hoped that the student will: develop their capacities for geometric 
and algebraic reasoning and mathematical calculus; be able to apply 
the knowledge of mathematical logic to frame and resolve abstract 
problems; and improve their capacity for consistent argumentation. 
 
On the Development of the Book and of the Author 
 
This book finds its distant origins in a philosophy of science course 
delivered by Professor Javier Moscoso at the University of Murcia 
between 2002 and 2003. It is thanks to his expert guidance, as well as 
the invaluable support of my friend Mario Marín Marín, that I first 
discovered my interest in science and physics, in particular. Indeed, 
the effect was such that my intention had been that, upon completion 
of my undergraduate degree in philosophy, I would move on to study 
physics at the University of Strasbourg. However, an Esquerdo Foun-
dation pre-doctoral scholarship at the Residencia de Estudiantes led to 
the postponement of this plan. During my years as a doctoral candi-
date at the Universidad Autónoma de Madrid, I had the opportunity to 
attend a number of mathematics courses at the Facultad de Ciencias 
Físicas of the Universidad Complutense (Madrid). Particularly im-
portant were the course in calculus given by the prematurely-deceased 
Joaquín Retamosa, another in linear algebra by José Ramón Peláez 
Sagredo, and two more in differential equations by Gabriel Álvarez 
Galindo and Pepe Aranda respectively. Gabriel Álvarez Galindo’s 
classes were simply brilliant –both profound and engaging– and I will 
never be able to adequately thank my friend Abelardo Gil-Fournier for 
suggesting that I attend. As a result of its proximity to the Residencia 
de Estudiantes, I attempted somewhat to fill the gaps in my 
knowledge of statistics and probability through Camino González 
Fernández’s course at the Escuela Técnica Superior of Industrial En-
gineers at the Universidad Politécnica de Madrid. After completing 
my PhD at the Universidad Autónoma de Madrid, and faced with a 
lack of professional opportunities, I returned to my earlier plan to start 
another undergraduate degree in the sciences, going so far as to enrol 
at the Centro Politécnico Superior at the Universidad de Zaragoza. 
This time, it was the award of a scholarship to undertake a second 
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doctorate at the Scuola Internazionale di Alti Studi di Modena (Italy) 
that led me, once again, to abandon my dreams of a scientific Enlight-
enment. However, fate demanded that my teaching work at the Uni-
versidad Autónoma Metropolitana in Mexico City (UAM-Unidad 
Cuajimalpa) should begin with the courses “Introduction to Mathe-
matical Thought” and “Logic” for humanities students. This book 
represents the fruits of both all past interest and my labors and experi-
ences gained teaching in the Department of Humanities at the UAM-
C. I am truly grateful to all of the people and institutions that have 
allowed me to pursue this alternative, belated and intermittently-
developed vocation, and especially to the students in the Department 
of Humanities. This book has benefited from funding of the “History 
of Ecological Economics and Theory of Natural Capital” research 
project supported by the Mexican Program of Basic Scientific Re-
search Conacyt/SEP (Reference 286529, 2018-2021). It is dedicated, 
with much admiration and affection, to the Quantum Geometry Group 
at the Instituto de Matemáticas (UNAM), and especially to Professor 
Micho Durdevich. Finally, I would like to thank Daniel S. Harper for 
the English translation. Any remaining mistakes or defects are, of 
course, my sole responsibility. 
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Chapter I 
 

Review of Algebra 
 
 

1.1. Arithmetical Operations 
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1.2. Exponentiation and Radical Expressions 
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1.3. Radical Expressions and Exponents 
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Properties of roots 
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1.4. Key Algebraic Expressions 
 
Square of a sum or a difference (the square of a binomial) 
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Cube of a sum or a difference 
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Product of a sum and a difference 
 

22))(( bababa −=−+  [viii] 
 
Examples 
 

25)9124()33222()32( 222 =++=+⋅⋅+=+  
          25)5( 2 ==  

 
=+−=+⋅⋅−=− )44()222()2( 2222 xxxxx  
)44()222()2)(2( 222 +−=+−−=−−= xxxxxxx  

 
 
1.5. First-Order and Second-Degree Equations 
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