Ao9

Paolo Allievi

Cataclysms & Reconstruction

Science & Technology

in collaboration with Felice Allievi

www.aracneeditrice.it info@aracneeditrice.it

Copyright © MMXVIII Gioacchino Onorati editore S.r.l. – unipersonale

> www.gioacchinoonoratieditore.it info@gioacchinoonoratieditore.it

> > via Vittorio Veneto, 20 00020 Canterano (RM) (06) 45551463

ISBN 978-88-255-1725-5

No part of this book may be reproduced by print, photoprint, microfilm, microfiche, or any other means, without publisher's authorization.

I edition: December 2018

to Rocco, Vittoria and Matilda, immense treasures! to Gemma, a hard worker who will be appreciated! to Julia that has tremendously encouraged me to public my physical and mathematical models of natural phenomena.

- 17 Symbols
- 43 Physical constants
- 45 Parameters values and physical quantities involved
- 55 Preface
- 57 Purpose and abstract of the chapters

Part I **Science**

89 Chapter I Anthropic Principle

1.1. Introduction to mathematical Models, 89 - 1.2. Introduction to the anthropic principle, 91 - 1.3. Questions, 92 - 1.4. Horizon, 93 - 1.5. The essential star for humankind, 97 - 1.6. Moon's apparent diameter is equal to Sun's apparent diameter, 99 - 1.7. Aliens, 99 - 1.8. Interstellar voyages, 100 - 1.9. Photon Energy, 101 - 1.10. DNA in the black holes, 102 - 1.11. Conclusion, 102.

105 Chapter II

DNA through black Holes

2.1. Introduction, 105 - 2.2. Stress on the DNA inside a Black Hole, 106 - 2.3. Maximum length of DNA to pass through a Black Hole uninjured, 108 - 2.4. Electromagnetic waves emitted by the DNA genes during a resonance, 110.

111 Chapter III Size of living beings

3.1. Introduction, 111 – 3.2. Gravitational aspects, 112 – 3.3. Thermal aspects, 114.

117 Chapter IV Energy

4.1. Introduction, 118 – 4.2. Measurement units of energy and power, 119 – 4.3. Kinetic and potential Energy, 120 – 4.4. Thermal Energy, 120 – 4.5. Mechanical Energy, 121 – 4.5.1. *Translational motion*, 121 – 4.5.2. *Rotational motion*, 121 – 4.6. Gravitational Energy, 122 – 4.6.1. *Stationary gravitational forces field*, 122 – 4.6.2. *Gravitational waves (Gravitons)*, 123 – 4.7. Electromagnetic Energy, 123 – 4.7.1. *Stationary electric forces field*, 123 – 4.7.2. *Electromagnetic waves (Photons)*, 123 – 4.8. Chemical Energy, 124 – 4.9. Nuclear energy, 125 – 4.10. Matter–Antimatter, 127 – 4.11. Universe Energy, 127.

133 Chapter V

Mass and energy conservation equations

5.1. Introduction, 133 – 5.2. Hydraulics, 133 – 5.3. Thermodynamics, 134 – 5.4. Nuclear, 135 – 5.5. Electromagnetism, 136 – 5.6. Chemistry, 138.

141 Chapter VI Special Relativity: $E = mc^2$

6.1. Lorentz transformations, 141 – 6.2. $E = mc^2$ (simplified demonstration), 146 – 6.3. $E = mc^2$ (rigorous demonstration), 148.

153 Chapter VII Fall of Meteorites

7.1. Introduction, 153 - 7.2. Impact of a meteorite in the ocean, 154 - 7.3. Impact of a meteorite, with a diameter D = 100 m, in the ocean, 157 - 7.4. Deviation of a meteorite through laser beams, 158.

161 Chapter VIII Tsunami

8.1. Introduction, 161 - 8.2. Height and initial velocities of the Tsunami wave, 162 - 8.3. Tsunami wave height at the coast, 164.

167 Chapter IX Hurricanes

9.1. Introduction, 167 – 9.2. Centrifugal and Coriolis acceleration, 168 – 9.3. Speed of Hurricanes, 169.

181 Chapter X

Internal pressure in the Earth and the Sun

10.1. Introduction, 181 - 10.2. Order of magnitude of the pressure inside a planet or a star through gravitational action, 183 - 10.3. Order of magnitude of the pressure inside a planet or a star through the resistive/expansive action, 188 - 10.3.1. *Planets*, 188 - 10.3.2. *Stars*, 189 - 10.4. Equation of state of a star, 190 - 10.5. Gravitational potential Energy $U_{p,g}$ and Coulombian potential Energy $U_{p,c}$ of a celestial body (Planet), 191 - 10.6. Gravity centre of a homogeneous hemisphere, 193.

195 Chapter XI

Man and Ant, work and fall

11.1. Introduction, 195 – 11.2. Specific work: comparison Man–Ant, 196 – 11.3. Fall: comparison Man–Ant, 198.

203 Chapter XII

Precession

12.1. Introduction, 203 – 12.2. Precession, 204.

209 Chapter XIII

Greenhouse effect 13.1. Introduction, 209 – 13.2. Thermodynamic model of the Earth, 210 – 13.3. Parameters and physical quantities of the 5 thermodynamic zones of the Earth, 211 – 13.4. Calculation of some parameters and physical quantities of the 5 thermodynamic zones of the Earth, 213 – 13.5. Heat Fluxes, heat balances and thermodynamic equilibrium of the Earth, 216 – 13.6. Annual increase in the average surface temperature T of the Earth

and seas level, due to the increase in the concentration r_{CO_2} of carbon dioxide in the atmosphere, 224 – 13.7. Seas level and surface temperature of Earth at the end of the century, 228 – 13.7.1. Secular increase in seas level due to the temperature ΔT , 229 – 13.7.2. Secular melting of the ices due to the temperature ΔT , 229.

233 Chapter XIV

Life of a star

14.1. Introduction, 233 – 14.2. Life of a star, 235.

241 Chapter XV Teleportation and Heisenberg principle

15.1. Introduction, 242 – 15.2. Heisenberg uncertainty Principle, 242 – 15.3. Gravitational uncertainty Principle, 244 – 15.4. Teleportation, 245.

249 Chapter XVI Complexity of the Universe

16.1. Introduction, 253 – 16.2. Natural Units, 253 – 16.3. Maximum Information, 254 – 16.4. Number of different thoughts, 255 – 16.5. Civilized Nation, 256 – 16.6. Quantization, 257 – 16.7. Miniaturization, 258 – 16.8. Avogadro's Number, 258 – 16.9. Analysis of the theological, philosophical, physical and biological aspects of a new theory of gravitation, which integrates the general theory of relativity by Einstein, 260 – 16.9.1. *Basic assumptions*, 260 – 16.9.2. *Results achieved*, 261 – 16.10. Gravitational conjectures, 266 – 16.10.1. *Introduction*, 266 – 16.10.2. *The tuning error*, 267 – 16.11. Double Pulsar, 268 – 16.12. Being: Spirit or Matter?, 270 – 16.13. Can man perturb the Earth's climate?, 272 – 16.14. Additional assumptions about the disappearance of the Dinosaurs, 274 – 16.15. Water on Planets, 275.

277 Chapter XVII Mass of the Universe

17.1. Introduction, 277 – 17.2. Mass of the Universe, 278.

281 Chapter XVIII Is the Universe finite or infinite (brightness of the night sky)?

18.1. Introduction, 281 – 18.2. Data of the visible Universe, 282 – 18.3. Luminous Flux on Earth, 282.

287 Chapter XIX The Being

291 Chapter XX

Is the Neutrino a form of unpolarized light?

20.1. Experiment data of neutrinos transmission from the CERN laboratory in Geneva to the INFN laboratory in Gran Sasso, 292 - 20.2. The polarized light, 293 - 20.3. The Neutrino, 293 - 20.4. Discovery of the Neutrino, 295 - 20.5. Neutrinos detectors, 296 - 20.6. Variability over time of the speed of light, 297 - 20.7. VSL (Varying Speed Light) by Joao Magueijo, 298.

301 Chapter XXI

The Earth's magnetic field

21.1. Magnetic field, 301 – 21.2. Earth's magnetic field, 303 – 21.3. Gravitational, electromagnetic and centrifugal Forces, 305.

307 Chapter XXII

Maximum height h of the mountains on the Planets

22.1. Gravitational energy, 307 - 22.2. Rotational kinetic energy, 308 - 22.3. Maximum height h of the mountains on the Planets, 308 - 22.4. Maximum height h of the mountains on Earth, 309.

311 Chapter XXIII Lightning

23.1. Electric charge stored on a cloud, 311 - 23.2. Electric charge associated with lightning, 312 - 23.3. Ratio R between the total electric charge Q stored on a cloud and the portion of it discharged to the ground during a lightning strike, 312.

Part II **Technology**

317 Chapter I Stability of Tokamak

1.1. Introduction, 318 - 1.2. What is the Tokamak, 318 - 1.3. What is the nuclear fusion?, 318 - 1.4. What is the nuclear fission?, 319 - 1.5. Comparison Fission – Fusion, 319 - 1.6. Comparison between nuclear Fusion in the Sun and into Tokamak, 320 - 1.7. Energy Distribution of N molecules in a gas at a temperature T_0 , 321 - 1.8. Stability, 322 - 1.9. Conclusions and prospects, 325.

327 Chapter II

Generation IV Reactor used to completely burn the Uranium

2.1. Introduction, 328 - 2.2. Conversion factor f_c of a nuclear reactor, 329 - 2.3. Searching for a conversion factor f_c greater than or equal to 1, 331 - 2.4. Fissile usable in thermal/fast nuclear Reactors in the world, 332 - 2.5. Conclusion, 334.

337 Chapter III

Aging of a nuclear reactor by irradiation

3.1. Introduction, 337 - 3.2. Aging for neutron flux, 338 - 3.3. Aging of the biological shield for neutron flux, 339 - 3.4. Calculation of the Dose absorbed by the biological shield, 340 - 3.5. Calculation of the residual relative Resistance of the biological shield, 340 - 3.6. Conclusions, 341.

345 Chapter IV Radiation shielding

4.1. Introduction, 346 – 4.2. Shielding of particle radiations, 347 – 4.3. Shielding of electromagnetic waves, 348.

353 Chapter V Electric grid Stability

5.1. Introduction, 354 - 5.2. Changes in voltage and frequency in situations of abnormal functioning of the network, 357 - 5.3. Conclusions, 358 - 5.4. Black out in Romania, 358.

363 Chapter VI Electric Blackout (power outage)

6.1. Introduction, 363 – 6.2. Black out, 365.

369 Chapter VII Electromagnetic pollution

7.1. Introduction, 369 – 7.2. Antenna for mobile, 370 – 7.3. High voltage power line, 372 – 7.4. Limits, 373 – 7.5. Calculations, 374 – 7.5.1. *Antennas*, 374 – 7.5.2. *Power grids*, 374 – 7.6. Conclusions, 378.

381 Chapter VIII

Air and hydrogen (H_2) cooled alternators

8.1. Introduction, 382 - 8.2. Dimensionless Numbers for fluids, 382 - 8.3. Heat transmission coefficient h in an alternator, 383 - 8.4. Energy losses in steady state, 384 - 8.5. Comparison between the powers P_{air} and P_{H2} of an alternator cooled in air or with hydrogen, 384.

387 Chapter IX

Power loss of an Alternator or a Transformer as a result of a test with increase of windings overtemperature

9.1. Introduction, 387 - 9.2. Power losses (V = cost), 388 - 9.3. Energy balance of an electrical machine in steady–state condition, 390 - 9.4. Power loss of an Alternator or a Transformer as a result of a test with increase of windings overtemperature, 390.

393 Chapter X

Comparison of the powers of the excitation system of air and $\rm H_2$ cooled alternators

10.1. Introduction, 394 - 10.2. Geometric characteristics of the alternator, 395 - 10.3. Phase voltage E of an alternator, 396 - 10.4. Comparison of the powers of the excitation system of air and hydrogen cooled alternators, 397.

399 Chapter XI

An application of the Laplace transform

11.1. Introduction, 399 – 11.2. Determination of the relationship Frequency– Power, 400 – 11.3. Laplace Transform and its inverse transform, 402 – 11.4. Example: Blackout in a national electricity grid, 404.

407 Chapter XII

Power Plants size as a function of electric generated Power P

12.1. Introduction, 407 - 12.2. Power transmitted by fluids, 407 - 12.3. Power transmitted by the electrical cables, 408 - 12.4. Quantity of metal piping, 409 - 12.5. Quantity of electric cables, 410.

411 Chapter XIII

Thermodynamic relationships for a steel wire rope subjected to stretch

13.1. Introduction, 411 – 13.2. Theorems of differential calculus applied to g(x,y,z) = 0, 412 - 13.3. Metal cable in tension, 413 – 13.4. Differentials of l and F, 414 – 13.5. 1st law (principle) of thermodynamics, 414 – 13.6. TdS for the hydrostatic systems and for the metal cable, 415 – 13.7. Internal Energy U of the metal cable, 416.

417 Chapter XIV

Accelerations for an earthquake of a given Richter magnitude

14.1. Introduction, 418 - 14.2. Acceleration on the ground due to an earthquake of Richter magnitude R^{*}, 420 - 14.3. Acceleration due to the Japanese earthquake of Richter magnitude 8.9, the earthquake in Irpinia (Italy) of Richter magnitude 6.9 and the L'Aquila (Italy) earthquake of Richter magnitude 6.5, 424.

427 Chapter XV Strain Energy of the Earth

15.1. Introduction, 428 – 15.2. Internal pressure in the Earth, 428 – 15.3. Strain Energy of the Earth $E_d = \alpha_d \cdot \left(G\frac{M^2}{R}\right) = \frac{1}{2}G\frac{M^2}{R}$, 430 – 15.4. Other Energies, 431.

433 Chapter XVI Concrete modules falling

16.1. Introduction, 433 - 16.2. Scheme of fall, 434 - 16.3. Potential and kinetic Energy of the module in fall, 434 - 16.4. Acceleration on the module after impact, 435 - 16.5. Stresses within the module after impact, 436.

441 Chapter XVII Principle of virtual works

17.1. Introduction, 441 – 17.2. Principle of virtual works: statement, 442 – 17.3. Principle of virtual works: aims, 442 – 17.4. Work of the internal forces L_i ., 446 – 17.5. Examples of application of the principle of virtual works, 448 – 17.6. Strain Energy of a pillar (column), 455 – 17.7. Strain energy of a beam (cantilever), 457.

465 Chapter XVIII Suspension bridge similar to that of Messina (Italy)

18.1. Physical–mathematical Introduction of the catenary, 466 – 18.2. Configuration of a suspension bridge similar to that of Messina (Italy), 471 – 18.3. Load analysis, 474 – 18.3.1. *Dead loads*, 474 – 18.3.2. *Live loads*, 476 – 18.4. Stresses and unit stresses (statics and verification), 479 – 18.4.1. *Cables*, 479 – 18.4.2. *Vertical steel ropes*, 480 – 18.4.3. *Towers*, 481 – 18.5. Thermal expansion, 485 – 18.6. Impact of an airplane sideways on a tower, 486 – 18.7. Quantities and Costs, 488 – 18.8. Program of activities, 488.

493 Chapter XIX

Comparison between a double circuit tower and two single circuit towers

19.1. Introduction, 493 - 19.2. Stresses at the base and on the foundation of the T1 and T2 towers, 494 - 19.3. Quantities, 497 - 19.4. Cost comparison of a double–circuit tower with 2 single-circuit towers, 497.

499 Chapter XX

Water hammer – Euler equations

20.1. Introduction–general equations of hydrodynamics – Euler equations, 499 – 20.1.1. *Water hammer*, 500.

505 Chapter XXI

Interstellar travels

21.1. Introduction, 506 - 21.2. First phase (I^{st} taking-off by Earth), 508 - 21.3. Second phase (moving away from the Earth, v = const, dv/dt = 0), 510 - 21.4. Third phase (further moving away from the Earth, v = const), 511 - 21.5. Interplanetary travels, 512 - 21.6. Interstellar travels, 512 - 21.7. Interstellar travels with exploration of habitable Planets, 513 - 21.8. Energy E of the space shuttle, 514 - 21.9. Chemical fuel consumption of a space shuttle, 515.

519 Chapter XXII

Landing of LEM (Lunar Excursion Module)

22.1. Introduction, 520 – 22.2. Energy Equations, 521 – 22.3. Fuel consumption, 522.

525 Chapter XXIII

Aging of materials (Arrhenius)

23.1. Introduction, 526 – 23.2. Laws of aging of materials, 527.

531 Chapter XXIV

Maximum concentration of aluminium in liquid radioactive waste to be cemented

24.1. Introduction, 531 – 24.2. Thermal effects and consequent stresses, 532 – 24.3. Mechanical effects due to volume increases, 533.

- 537 Annexes
- 541 Acknowledgments

Symbols

- α = Helium Nuclei.
- α = coefficient of linear thermal expansion of a material.
- α = angle of "shot" of laser beams towards a meteorite.
- α = angle of rotation.
- α = ratio between muscle mass and total mass of a living being.
- α = ratio between power losses, at no load, and total power losses in the operation of an electric machine (Alternator or transformer).
- α = fraction of annual melting of the surface ice mass M_{isps} of the polar caps.
- α = number of solar masses.
- $\alpha = (R/r)^2$ = reduction factor of the gravitational force with distance *r* from a celestial body (star, planet) of radius *R*.
- α_{100} = fraction of secular melting of the surface ice mass M_{isps} of the polar caps.
- α_a = coefficient of heat exchange, by convection, of the air–ice system.
- α_c = coefficient of linear thermal expansion of a cement matrix.
- α_e = fraction of the water mass of the oceans, for a depth of 20 m, evaporated into the atmosphere ($\alpha_e = M_{we}/M_w$).
- α_f = coefficient of linear thermal expansion of the iron.
- α_{λ} = ratio of the average free paths of a photon by diffusion from carbon dioxide and from steam present in the atmosphere.
- $\alpha_{\vartheta,0-\pi/2}$ = coefficient of reduction of luminous flux on Earth by the light emission, from various angles ϑ , of all the stars in the universe.
- α_s = annual change in the ratio between Σ_s and Σ_{CO_2} , due solely to the variation of the density of the vapour in the Earth's atmosphere.
- $\alpha_S = S/h^2 =$ coefficient of surface of a living being.
- $\alpha_{SU} = S/h^2$ = coefficient of surface of human skin.

 α_T = atmospheric thermal factor.

 $\alpha_V = V/h^3 =$ coefficient of volume of a living being.

 $\alpha_{VU} = V/h^3 =$ coefficient of volume of a man.

a =acceleration.

 $a = k_a h$ = width of a living being.

 $a = 4\sigma/c = \text{constant of a black body.}$

a =coefficient of luminous absorption.

 a_a = absolute acceleration with respect to an inertial reference frame *S*.

 a_c = centripetal acceleration.

 a_{cf} = centrifugal acceleration.

 $a_{Coriolis}$ = Coriolis acceleration.

$$a_l = light-year.$$

- a_r = relative acceleration with respect to a non-inertial reference system *S*'.
- a_t = drag acceleration of a non–inertial reference system *S*' with respect to an inertial reference system *S*.
- a_u = acceleration imparted to a cubic concrete module immediately after the impact to the ground, falling by *1 m* in height.
- a_{uU} = acceleration imparted to a man immediately after the impact to the ground, falling by *10 m* in height.

A = area.

A = absorption of chemical product in aqueous solution (*g*/*litre s*).

A =atomic weight.

 A_{CO_2} = atomic weight of carbon dioxide molecule.

 $A_{H_{2O}}$ = atomic weight of water molecule.

 A_{N_2} = atomic weight of nitrogen molecule.

 A_{O_2} = atomic weight of oxygen molecule.

AU = Astronomical Unit.

- β = ratio between transverse dimension and height of a living being (man, ant, etc.).
- β = coefficient of cubical expansion of water.

 $\beta^{-} =$ electron.

 β^+ = positron.

b = base of the rectangular section of a metal rod, fixed at one end.

 $b = k_b h =$ length of a living being.

 b_G = Angular momentum, of a rigid body in rotation, with respect to the axis of rotation passing through the centre of gravity G of the body itself.

 b_{spin} = angular momentum.

B = magnetic Induction.

 B_{max} = magnetic field limit due to both transmitting antennas (1 *GHz*) and grids at high voltage and at 50 *Hz*.

 B_{Earth} = Earth's magnetic field.

c = speed of light in vacuum.

c = speed of seismic waves in a material medium.

 $c = c_s$ = speed of sound (overpressure) in water.

- c = concentration of a chemical product in aqueous solution (*g*/*litre*).
- *c* = electrical capacitance, per unit of length, of a metallic threadlike conductor with respect to ground.
- C = moving torque on the rotor of a turbine–generator.

 c_a = specific heat of water.

- c_{Al} = specific heat of aluminium.
- c_c = specific heat of the concrete.
- c_{cls} = specific heat of the concrete.

 c_{fe} = specific heat of the iron.

 c_F = specific heat of a metal cable subjected to constant stretch (force) *F*.

- c_i = specific heat of ice.
- C_i = Curie (I Ci = ICurie, are the disintegrations per second per gram of radium).
- c_l = specific heat of a metal cable, at constant length *l*.
- *c_m* = average specific heat of the atmosphere–oceans–continents system of the Earth.

 $cos\phi = power factor.$