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Abstract
In this article, we study (locally) nilpotent and hyper-central Leibniz algebras. We
obtained results similar to those in group theory. For instance, we proved a result
analogous to the Hirsch-Plotkin Theorem for locally nilpotent groups.
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1 Introduction

The concept of nilpotency arises in many algebraic disciplines and
plays a key role there. One of the sources of its origin were trian-
gular matrices. The ring theoretical concept of a commutator of two
triangular matrices led to the zero-triangular matrices, the nilpotency
in associative rings, the lower central series, and the concept of nilpo-
tency in Lie algebras. The concept of a group-theoretical commutator
of two nonsingular triangular matrices led to unitriangular matrices,
and to the concept of the lower central series in the group of ma-
trices. At the first stage, this commonality of origin brought some
parallelism in approaches, however then the specificity of each the-
ory introduces its own modifications. Nevertheless, it turned out that
in many cases, the same approaches led to comparable results in
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groups and Lie algebras. This parallelism runs through the book [1],
it was noted in many articles devoted to Lie algebras, in particu-
lar, in the paper [17]. One of the interesting generalizations of Lie
algebras is Leibniz algebras. Therefore, the following question natu-
rally arises: Which of the group-theoretical concepts and results have
analogs in Leibniz algebras? An algebra L over a field F is said to be
a Leibniz algebra (more precisely a left Leibniz algebra) if it satisfies
the Leibniz identity

[[a,b], c] = [a, [b, c]]- [b, [a, c]] for all a,b, c 2 L. (LI)

Leibniz algebras are generalizations of Lie algebras. Indeed, a Leib-
niz algebra L is a Lie algebra if and only if [a,a] = 0 for every el-
ement a 2 L. By this reason, we may consider Leibniz algebras as
“non-anticommutative” analogs of Lie algebras. Leibniz algebras ap-
peared first in the papers of A.M. Bloh [4],[5],[6],. . . in which he
called them the D-algebras. However, at that time these researches
were not in demand, and they have not been properly developed.
Real interest in Leibniz algebras arose only after two decades. This
happened thanks to J.L. Loday [12], who “rediscovered” these al-
gebras and used the term Leibniz algebras since it was Leibniz who
discovered and proved the “Leibniz rule” for differentiation of func-
tions.
The Leibniz algebras appeared to be naturally related to several ar-
eas such as differential geometry, homological algebra, classical al-
gebraic topology, algebraic K-theory, loop spaces, noncommutative
geometry, and so on. The theory of Leibniz algebras develops quite
intensively now, however, it should be noted that most of the ob-
tained results refer to finite-dimensional Leibniz algebras, and in
the greater part of the latter, algebras over fields of characteristic
zero are only considered. This also applies to nilpotent Leibniz al-
gebras. The concept of nilpotency for the Leibniz algebras is intro-
duced as follows. Let L be a Leibniz algebra over a field F. If A,B are
subspaces of L, then [A,B] will denote a subspace, generated by all
elements [a,b] where a 2 A,b 2 B. We note that if A is an ideal of L,
then [A,A] is also an ideal of L.

If M is non-empty subset of L, then hMi denotes the subalgebra
of L generated by M.

Let L be a Leibniz algebra. We define the lower central series of L

L = �1(L) > �2(L) > . . . > �↵(L) > �↵+1(L) > . . .��(L)
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by the following rule: �1(L) = L,�2(L) = [L, L], and recursively,

�↵+1(L) = [L,�↵(L)]

for all ordinals ↵, while

��(L) =
\

µ<�

�µ(L)

for limit ordinals �. It is possible to shows that every term of this
series is an ideal of L. The last term ��(L) is called the lower hypocenter
of L. We have ��(L) = [L,��(L)].

If ↵ = k is a positive integer, then �k(L) = [L, [L, [L, . . . , L] . . .].

A Leibniz algebra L is called nilpotent if there exists a positive in-
teger k such that �k(L) = h0i. More precisely, L is said to be nilpo-
tent of nilpotency class c if �c+1(L) = h0i, but �c(L) 6= h0i. We denote
by ncl(L) the nilpotency class of L.

In some algebraic structures, another definition of nilpotency based
on the concept of the (upper) central series is used. In fact, suppose
that L is a nilpotent Leibniz algebra and �k+1(L) = h0i. For each fac-
tor �j(L)/�j+1(L) we have

[L,�j(L)] = �j+1(L) and [�j(L), L] 6 �j+1(L),

and this leads us to the following concepts. Let A,B be the ideal of L
such that A 6 B. The factor B/A is called central (in L) if

[L,B], [B, L] 6 A.

The center ⇣(L) of a Leibniz algebra L is defined in the following
way:

⇣(L) = {x 2 L | [x,y] = 0 = [y, x] for each element y 2 L}.

Clearly, ⇣(L) is an ideal of L. In particular, we can consider the factor-
algebra L/⇣(L). Starting from the center we can define the upper cen-
tral series

h0i = ⇣0(L) 6 ⇣1(L) 6 . . . 6 ⇣↵(L) 6 ⇣↵+1(L) 6 . . . ⇣�(L) = ⇣1(L)

of Leibniz algebra L by the following rule: ⇣1(L) = ⇣(L) is the center
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of L, and recursively

⇣↵+1(L)/⇣↵(L) = ⇣(L/⇣↵(L))

for all ordinals ↵, while

⇣�(L) =
[

µ<�

⇣µ(L)

for limit ordinals �. By definition, each term of this series is an ideal
of L. The last term ⇣1(L) of this series is called the upper hypercenter
of L. A Leibniz algebra L is said to be hypercentral if it coincides with
the upper hypercenter. Denote by zl(L) the length of upper central
series of L. In the paper [11], the connection between the lower and
upper central series in nilpotent Leibniz algebras has been consid-
ered. It was proved that in this case, the lengths of the lower and
upper central series coincide. Moreover, they are the least among the
lengths of all other central series.

The concepts of upper and lower central series introduced here
immediately lead to the following classes of Leibniz algebras.

A Leibniz algebra L is said to be hypercentral if it coincides with the
upper hypercenter.

A Leibniz algebra L is said to be hypocentral if it coincides with the
lower hypercenter.

In the case of finite dimensional algebras, these two concepts co-
incide, but in general, these two classes are very different. Thus, for
finitely generated hypercentral Leibniz algebras we have the follow-
ing theorem.

Theorem A. Let L be a finitely generated Leibniz algebra over a field F. If L
is hypercentral, then L is nilpotent. Moreover, L has finite dimension. In
particular, a finitely generated nilpotent Leibniz algebra has finite dimen-
sion.

This result is an analog of a similar group theoretical result proved
by A.I. Mal’cev (see [13]).

At the same time, a finitely generated hypocentral Leibniz alge-
bra can have infinite dimension. Thus, a cyclic Leibniz algebra hai
where an element a has infinite depth is hypocentral and has infinite
dimension (see [8]).

A Leibniz algebra L is said to be locally nilpotent if every finite
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subset of L generates a nilpotent subalgebra.
That is why, hypercentral Leibniz algebras give us examples of lo-

cally nilpotent algebras. We obtained the following characterization
of hypercentral Leibniz algebras.

Theorem B. Let L be a Leibniz algebra over a field F. Then L is hypercentral
if and only if for each element a 2 L and every countable subset {xn|n 2 N}

of elements of L there exists a positive integer k such that all commuta-
tors [x1, . . . , xj,a, xj+1, . . . , xk] are zeros for all j, 0 6 j 6 k.

Corollary. Let L be a Leibniz algebra over a field F. Then L is hypercentral
if and only if every subalgebra of L having finite or countable dimension is
hypercentral.

These results are analogues to the results proved for groups
by S.N. Chernikov (see [7]).

Let L be a Leibniz algebra. If A,B are nilpotent ideals of L, then
their sum A+B is a nilpotent ideal of L (see [3], Lemma 1.5). In this
connection, the following question arises: is an analogous assertion
valid for locally nilpotent ideals? As it was shown by
B. Hartley (see [9]), for Lie algebras this assertion takes place. Our
next result gives a positive answer to this question.

Theorem C. Let L be a Leibniz algebra over a field F,A,B be locally nilpo-
tent ideals of L. Then A+B is locally nilpotent.

Corollary C1. Let L be a Leibniz algebra over a field F and S be a family
of locally nilpotent ideals of L. Then a subalgebra generated by S is locally
nilpotent.

Corollary C2. Let L be a Leibniz algebra over a field F. Then L has the
greatest locally nilpotent ideal.

Let L be a Leibniz algebra over field F. The greatest locally nilpo-
tent ideal of L is called the locally nilpotent radical of L and will be
denoted by Ln(L).

These results are the analogues to the results for groups proved
by K.A. Hirsch (see [10]) and B.I. Plotkin (see [15]); see also the sur-
vey [16].

The subalgebra Nil(L) generated by all nilpotent ideals of L is
called the nil-radical of L. Clearly Nil(L) is an ideal of L. If L = Nil(L),
then L is called a Leibniz nil-algebra. Every nilpotent Leibniz algebra
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is a nil-algebra, but the converse is not true even for a Lie algebra. Ev-
ery Leibniz nil-algebra is locally nilpotent, but converse is not true
even for a Lie algebra. Moreover, there exists a Lie nil-algebra, which
is not hypercentral (see, for example, [1], Chapter 6).

Note the following important properties of locally nilpotent Leib-
niz algebras.

Theorem D. Let L be a locally nilpotent Leibniz algebra over a field F.

(i) If A,B are ideals of L such that A 6 B and the factor B/A is L-chief,
then B/A is central in L (that is B/A 6 ⇣(L/A)). In particular, we
have that dimF(B/A) = 1.

(ii) If A is a maximal subalgebra of L, then A is an ideal of L.

Let L be a Leibniz algebra over a field F and H a subalgebra of L.
The idealizer of H is defined by the following rule:

IL(H) = {x 2 L | [h, x], [x,h] 2 H for all h 2 H}.

It is possible to prove that the idealizer of H is a subalgebra of L.
If L is a hypercentral (in particular, nilpotent) Leibniz algebra,
then H 6= IL(H) (see Proposition 1.10 below). This leads us to the
following class of Leibniz algebras.

Let L be a Leibniz algebra over field F. We say that L satisfies the
idealizer condition if IL(A) 6= A for every proper subalgebra A of L.

A subalgebra A is called ascendant in L, if there is an ascending
chain of subalgebras

A = A0 6 A1 6 . . . A↵ 6 A↵+1 6 . . . A� = L

such that A↵ is an ideal of A↵+1 for all ↵ < �.
It is possible to prove that L satisfies the idealizer condition if and

only if every subalgebra of L is ascendant. The last our result is the
following

Theorem E. Let L be a Leibniz algebra over a field F. If L satisfies the
idealizer condition then L is locally nilpotent.

This result is an analogue to the result proved for groups in [14]
by B.I. Plotkin.

Again, it should be noted that Leibniz algebras with the idealizer
condition will form a subclass of the class of locally nilpotent Leib-
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niz algebras, since this is already the case for Lie algebras (see, for
example, [1], Chapter 6).

2 On hypercentral Leibniz algebras

Proposition 2.1 Let L be a finitely generated Leibniz algebra over a field F.
Let H be an ideal of L having finite codimension. Then H is finitely gener-
ated as an ideal.

Proof — Let
M = {a1, . . . ,an}

be a finite subset generated L, and let B be a subspace of L such
that L = B�H. Let codimF(H) = d. Then dimF(B) = d. Choose in B

some basis {b1, . . . ,bd}. Denote by prB (respectively prH) the canoni-
cal projection of L on B (respectively H). Let E be the ideal, generated
by the elements

{prH(aj),prH([aj,bm]),prH([bm,aj])|1 6 j 6 n, 1 6 m 6 d}.

By such choice H includes E, and E is a finitely generated as an ideal
of L. If x is an arbitrary element of E+B, then x = u+ b where u 2 E

and b 2 B. Furthermore

b = ↵1b1 + . . .+↵dbd

for suitable elements ↵1, . . . ,↵d 2 F. We have

[b,aj] = [↵1b1 + . . .+↵dbd,aj] = ↵1[b1,aj] + . . .+↵d[bd,aj] =

↵1(prH([b1,aj]) + prB([b1,aj]) + . . .+↵d(prH([bd,aj]) + prB([bd,aj]) =

↵1prH([b1,aj]) +. . .+↵dprH([bd,aj]) +↵1prB([b1,aj]) +. . .+↵dprB([bd,aj]);

[aj,b] = [aj,↵1b1 + . . .+↵dbd] = ↵1[aj,b1] + . . .+↵d[aj,bd] =

↵1(prH([aj,b1]) + prB([aj,b1]) + . . .+↵d(prH([aj,bd]) + prB([aj,bd]) =

↵1prH([aj,b1]) + . . .+↵dprH([aj,bd]) +↵1prB([aj,b1]) + . . .+↵dprB([aj,bd]).

The elements

⌃1 6 m 6 d(↵mprH([bm,aj]) +↵mprB([bm,aj])),
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and
⌃1 6 m 6 d(↵mprH([aj,bm]) +↵mprB([aj,bm]))

clearly belong to E+B. It follows that E+B is an ideal of A. Since

aj = prH(aj) + prB(aj) 2 E+B, 1 6 j 6 n,

then
E+B = A = H+B.

The inclusion E 6 H and the equation H\B = h0i imply that H = E.
In particular, H is a finitely generated as an ideal. ut

Corollary 2.2 Let L be a finitely generated Leibniz algebra over a field F.
If L is nilpotent, then L has finite dimension.

Proof — Let
h0i = Z0 6 Z1 6 . . . 6 Zn = L

be the upper central series of L. Proposition 2.1 shows that Zn-1

is finitely generated as an ideal, since L/Zn-1 is abelian and the
dimension dimF(L/⇣n-1(L)) is finite. The inclusion

Zn-1/Zn-2 6 ⇣(L/Zn-2)

implies that Zn-1/Zn-2 is finitely generated as a subalgebra. In turn
out, it follows that dimF(Zn-1/Zn-2) is finite. Then dimF(L/Zn-2)
is finite. Using the similar arguments and ordinary induction we
prove that dimF(L) is finite. ut

Proof of Theorem A — Let

h0i = Z0 6 Z1 6 . . . 6 Z↵ 6 Z↵+1 6 . . . Z� = ⇣1(L) = L

be the upper central series of L. Since L is finitely generated, � is
not a limit ordinal. Suppose that � is infinite, then � = +n for
some limit ordinal  > !. Then L/Z is a nilpotent finitely gener-
ated Leibniz algebra, and Corollary 2.2 shows that L/Z has finite
dimension. Then Proposition 2.1 implies that Z is finitely generated
as an ideal. Let

W = {w1, . . . ,wm}

be a finite subset such that Z is generated by W as ideal. From the


