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Chapter 7           

 
Stability and control, 

 introduction to helicopter flight dynamics  
 

  
 

 

 

 

 

7.1.    Introduction 
 

The properties analyzed in this chapter are concerned with the response 

of the helicopter after the perturbation of a steady trimmed flight condition, 

produced by the action of a gust or the action of the pilot through flight 

controls.  

In particular, helicopter behavior is expressed in terms of stability and 

control characteristics, which configure the flight qualities; these topics con-

stitute a significant part of the flight dynamics.  

This chapter introduces some fundamental problems of helicopter 

stability and control by means of theories using typical assumptions to 

simplify the approach.  

Therefore, as in the basic analysis of fixed-wing aircraft, we assume the 

following for the disturbed motion of the helicopter: small disturbances and 

the separation of longitudinal and lateral motions. For the latter case, we saw 

that its consequences represent major critical issues for the analysis applied 

to the helicopter (remember the natural mating between the two types of 

motion due to the modalities of main rotor flapping). For a conventional 

helicopter configuration with a single main rotor, which we will analyze in 

this chapter, the tail rotor confers asymmetry to the whole rotorcraft, which 

requires solving all the equations of motion simultaneously, for a rigorous 

approach. 

However, it is general practice to set up basic analysis on the separation 

of the two types of motions, for the following reasons: considerable problem 

simplification and interesting obtained results. Therefore, the treatment that 

follows adopts the assumptions above.  
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Finally, the arguments incorporate methodologies and procedures ready 

to be implemented on the computer.  

 

 

7.2.    The single-degree of freedom dynamic system 
 

Before introducing the helicopter stability, it is very useful to review the 

properties of the system composed of a mass, a spring and a damper, that can 

be modelled by a second-order differential equation. This system can be 

used to understand and to represent many dynamic systems, and it provides 

results which are needed for the presentation of the arguments that follow. 

Thus, in the general model (shown in Figure 7.1) a force F(t), that is the 

forcing function or the applied force, acts on the mass m; in x-direction, 

there are also a linear force provided by the spring and a damping force, 

proportional to the mass velocity, provided by the damper.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 
Figure 7.1    Mass/spring/damper dynamic system, single-degree of freedom  
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Homogeneous solution or free response 

Considering that m(dx2/dt) is the inertia force, the following second-order 

differential equation describes the dynamic system shown in Figure 7.1: 
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2

 

 

It is an ordinary differential equation with constant coefficients. 

The solution of the homogeneous equation  
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 kx
dt
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provides the transient or free response of the system. The solution is found 

by substituting  x = Aeλt  into the equation; therefore, we obtain: 
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Therefore, the solution of the homogeneous differential equation is: 
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and it represents the free response of the damped system, where a1 and a2 are 

constants and are determined from the initial conditions. This solution de-

pends on the values of m, c and k. In particular, consider that if we have  

 



















m

k

m

c

2
 



244          Theory of helicopter flight 

the solution is 
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This solution describes a damped sinusoidal motion, characterized by the 

following damped natural frequency ω: 
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Consider that if we have 
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the solution x(t) describes a critical damped motion; in this case, we have 

 

km
m

km
ccr 22

2















  

 

where ccr is defined as the critical damping constant, and the ratio ζ 

 

crc

c
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is defined as the damping ratio. 

Now, let us write the homogeneous equation for the undamped system (c=0): 
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By using the previous procedure, we obtain the following solution:  
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which describes a steady sinusoidal motion, characterized by the following 

undamped natural frequency ωn: 

 











m

k
n  

  

Finally, Figure 7.2 shows all the solutions as functions of m, c and k. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.2    Types of free response of the dynamic system with a single-degree of freedom  
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Finally, using the parameters defined above, the second-order differential 

equation with constant coefficients that describes the mass/spring/damper 

dynamic system shown in Figure 7.1 can be written as: 
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Therefore, the damped natural frequency ω, the damping ratio ζ and un-

damped natural frequency ωn are determined from the analysis of the free re-

sponse of the system. In fact, note that the solution of the following 

characteristic equation 
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can be written, in a general form, as 

 

2
2,1 1   nn i  

 

 

Particular solution corresponding to a sinusoidal applied force 

Now, let us consider the case where the forcing function F(t)≠0  
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and is equal to F(t)/m=F0cosωt. Therefore, the equation of the dynamic sys-

tem (with a single-degree of freedom) becomes: 
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Before continuing, let us remember that the solution of the second-order 

differential equation is the sum of the solution of the homogeneous equation, 

that represents the transient motion, with F(t)=0, and of a particular solution 

of the complete equation, the steady motion, with F(t)≠0.  

Hence: 

 

x(t) = [x(t)]homogeneous eq  +  [x(t)]particular solution  
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We have that: {[x(t)]particular solution  = Xf cos(ωf t + ϕ)}, where the response ampli-

tude Xf  and the phase angle ϕ are given by the following expressions: 
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These relations define the frequency response of the system. 

 

 

 

 

 
 

 

 

 

 

 
 

 
Figure 7.3    Amplitude and phase, frequency response  
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Transfer function of the mass/spring/damper system 

Considering that the equation of the system is 
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then, let us write 
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Choose the initial conditions as  
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write the Laplace transform of x(t) and of f(t):  
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From the relations above we have:   
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Finally, the transfer function G(s) of the system, that is the ratio of the output 

and the input, is equal to: 
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State-space modeling 

The following relations 
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can be written in matrix form as 
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where u(t)=f(t). We have:  
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x is the state vector.  

The system is fully described by the state-space matrices A and B.  

Now, we know that the free response of the system, where f(t)=0, may be 

studied by the equations: 
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xx )(  into equations above gives  

 

                                   0 jj xIA         where I is the identity matrix. 
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Now, the vector xj is the eigenvector associated with the eigenvalue λj of the 

matrix A. The solution is the following linear combination: 
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(cj is a constant that is fixed by the initial conditions) 

 

 

Control form of a second-order differential equation 

If the system has mass m=1, then it can be visualized by the diagram in 

Figure 7.4: 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 
Figure 7.4    Control form of the second-order differential equation  

 

 

7.3.    Helicopter static stability and dynamic stability 
 

The stability, in general terms, is defined as the capability to restore an initial 

trim condition that has been perturbed by a particular cause.  

Static stability is defined as the initial tendency of the system to return to 

the trim condition. Then, dynamic stability is defined as the tendency of the 

system to restore the trim condition as the time goes on. In other words, the 

static stability studies the initial motion (initial response) of the aircraft after 

the perturbation. Instead, the dynamic stability is concerned with the evolu-

tion of the aircraft motion versus time, in relation with the tendency to return 

to or to leave the trim condition that has been perturbed.  
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It should be noted that an aircraft can be statically stable but dynamically 

unstable. However, the static stability is a necessary condition but is not a 

sufficient condition for the dynamic stability. 

 
 

7.4.    Helicopter static stability 
 

In the pages that follow we will discuss some fundamental cases related 

especially to the main rotor properties, because it supplies a relevant 

contribution to the stability characteristics of the helicopter as a whole. 

 

 

7.4.1.    Stability following forward speed perturbation 

 

In the context of the aircraft response immediately following a disturbance, 

as first case, we treat the response to speed perturbation in the direction of 

the motion. Supposing to analyze a forward flight condition, for the reason 

we saw in the previous chapters, an increase in forward speed will involve 

an increase of the rotor flapping with backward inclination of rotor disc. 

Therefore, the rotor thrust is characterized by a component in the tail 

direction that opposes the disturbance: the rotor supplies a contribution to the 

static stability. The fuselage, instead, can provide a contribution to stability 

or a contribution to instability, depending on the direction of the generated 

aerodynamic forces (lift and drag). It is also clear that an additional 

contribution to stability can be provided by the horizontal stabilizer, 

depending on its dimensions and position on the entire helicopter. These 

considerations are valid for both forward and hovering flight, taking into 

account the fact that as the speed decreases the contribution from the 

fuselage and from the horizontal tail tends to decrease (until being negligible 

in estimation at very low flight speed). 

 

 

7.4.2.    Stability following vertical speed or incidence perturbation 

 

Assume a steady level flight condition; as a consequence of a vertical gust, 

the main rotor blades have an increase in incidence and the rotor thrust also 

increases. The total effect on the advancing and retreating blades 

(considering also the difference in relative speed) produces backward 

flapping of the rotor, with the generation of a nose up pitching moment. In-

deed, after the inclination of the rotor disc, this moment is due to the thrust: 

the rotor is statically unstable. It is clear that the rotor instability grows as the 

forward speed increases. The considerations discussed above for the fuselage 
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are still valid, but generally its contribution is in terms of instability. The 

only one contribution to stability is provided by the horizontal stabilizer: this 

contribution grows as the forward speed increases. Finally, note that the 

availability of accurate methods for analysis of aeroelastic phenomena of 

rotor blades and the use of advanced composite materials can allow the 

designer to obtain appropriate load distributions to contain the unstable 

effect of the rotor on the response to the incidence perturbation. 

 

 

7.4.3.    Stability following yawing perturbation 

 

Assuming an attitude with a yawing angle different from zero, a change in 

the incidence of the tail rotor is obtained; this variation provides a damping 

effect, similar to that of a vertical fin (known as ‘fin effect’). Therefore, the 

vertical fin provides an important contribution to the stability, because it 

responds generating a lateral force that produces a consequent yawing 

moment. This moment confers stability.  

However, different from fixed-wing aircraft, it shall be noted that 

evaluation regarding the fin (and the tail rotor) of the helicopter shall take 

into account the effects due to the main rotor wake on the empennage. In-

creasing the forward speed, we shall consider also the contribution from the 

fuselage (generally neglected at low flight speed): its action can be of stable 

or unstable type, depending on the disturbance, the position of the centre of 

gravity and the airframe geometry. 

 

 

7.5.    Helicopter dynamic stability 
 

Procedures and methods for the helicopter stability analysis (from the de-

termination of equations of motion to the application to the flight test issues) 

have been developed, since early studies, by extending the methodologies 

applied to the fixed-wing aircraft. Therefore, also the topic that follows is 

characterized by an initial formal setting clearly common for rotary-wing 

and fixed-wing aircraft, and by a subsequent stage, where we find the typical 

problems to be solved for the helicopter. 

Again, we recall Equations (5.5b) determined in Chapter 5, with the rigid 

body assumption. Now, for an accurate assessment, each rotor blade has its 

own degree of freedom, which provides a contribution to the perturbed 

motion. Consequently, for the helicopter with a single main rotor, over the 

six equations of motion as for a fixed-wing aircraft (three for the translation 

and three for the rotation about the reference axes) we shall add, in a basic 

approach, as minimum other three equations: one for rotor longitudinal 
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flapping, one for lateral flapping, and one for conic attitude of the rotating 

blades. Remember that due to rapid response of the blades versus the whole 

airframe, the rotor can be assumed as a compact generator of forces and 

moments, neglecting the motion of the single blade. Then, this is a quasi-

static condition of motion, by which, now, the equations are only six 

(because there are six active degrees of freedom). Obviously, this condition 

cannot be maintained in those cases where the designer needs to study 

aeroelastic phenomena or resonance. However, those cases are beyond the 

purposes of the present book. From the previous notes and assumptions, we 

recall the set of Equations (5.5b), now with the new number (7.1): 
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with the auxiliary Equations (5.5b): 
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Equations (7.1), representing the balance of forces and moments acting 

on the helicopter, constitute the basic model to study the aircraft motion. We 

remember that the equations have been written with respect to the body axes, 

with the following assumptions: rigid body, constant mass, existence of the 

aircraft plane of symmetry. 

From a general point of view, each Equation (7.1) is related to a degree of 

freedom, having therefore three degrees of freedom for translation and three 

degrees of freedom for rotation. Going in depth into dynamic stability analy-

sis, we will discuss the fixed control cases. The classical approach (that is 

followed in the present book) considers that the action by a gust or the action 
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to perform a manoeuvre generate an unsteady flight condition, analyzed 

superimposing a ‘disturbance’ to the initial steady condition of motion. 

From a mathematical point of view, this approach requires to consider the 

terms in the set (7.1) equal to the sum of the value in the initial steady trim 

condition and the value of perturbation. Therefore, we can write: 

 

  uVV xx  0                 vVV yy  0              wVV zz  0  

 

 ppx  0                qqy  0               rrz  0                       

 

  XFF xxa  0            YFF yya  0              ZFF zza  0            (7.2)     

 

  LMM xxa  0           MMM yya  0          NMM zza  0  

 

   d 0               d 0              d 0  

 

where the terms with subscript ‘0’ represent the initial condition of motion 

and the second term (we take, for example, u) defines the disturbance. 

By using expressions (7.2), the first equation of the set (7.1) can be 

written in the following form: 

 

    )()])(())(()[( 00000 XFvVrrwVqquV
g

W
xyzxo

G                  

                                                                                   )sin( 0 dGW   

and,  

  

  )]()()[( 00000000 rvvrrVVrqwqVwqVquV
g

W
yyzzxo

   

                                                       )sin()( 00 dx WXF         (7.3)     

 

Now, consider that in the trim condition, before introducing the 

disturbance, we can write the following expression: 

 

0000000 sin)(  Gxyzx
G WFVrVqV

g

W   

 

Therefore, the Equation (7.3) can be written as: 
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]sin)[sin()( 000000  dyz WXrvvrrVqwwqqVu
g

W
  

 

Operating in a similar manner on the other five equations and using the 

expressions (7.2), finally, we obtain the following set of equations: 

 

 ]sin)[sin()( 000000  dGyz
G WXvrrVwqqVrvqwu

g

W
   

 )sin()[cos()( 000000 ddGzx
G WYwppVurrVwpurv

g

W


                                                                  ]sincos 00         

 )cos()[cos()( 000000 ddGxy
G WZuqqVvppVuqvpw

g

W


                                                                  ]coscos 00   
 

 LIpqpqqprIIqrqrrqIp xzzyx  )())(( 0000   

 MIrppprrIIprprrpIq xzxzy  )22())(( 22
0000  

  NIqrqrrqpIIpqpqqpIr xzyxz  )())(( 0000                         (7.4) 

 

The system (7.4) is the set of equations for the perturbed motion in the 

general form. 

 

 

7.5.1.    Small disturbance theory 

 

The perturbed dynamics is based on the resolution of the set of Equations 

(7.4), once the initial condition of motion has been fixed and the forces and 

moments acting on the aircraft have been defined for each scalar equation. In 

order to approach this typology of problem, methods and assumptions shall 

be obviously defined in accordance with the task to be accomplished. 

Considering the notes discussed in the previous pages, the small disturbance 

assumption can be valid and applicable to many problems and constitutes the 

initial approach for many dynamic analyses due to the simplification of the 

mathematical models and to the interesting results which can be obtained.  

From a mathematical standpoint, this assumption allows the disturbance 

quantities and their derivatives to be considered small, and, consequently, we 

can neglect their products and squares into Equations (7.4). Moreover, 

angles are considered so small that the cosine can be considered equal to 1, 

and the sine and the tangent equal to the value of the angle expressed in 

radians. Therefore, let us use the following expressions: 
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000 cossin)sin(  dd  

000 sincos)cos(  dd  

                                                  
Now, Equations (7.4) become: 

 

 ]cos[)( 00000  dGyz
G WXvrrVwqqVu

g

W
               

]sinsincoscos[)( 00000000  ddGzx
G WYwppVurrVv

g

W
           

)cossinsincos()( 00000000  ddGxy
G WZuqqVvppVw

g

W


 LIpqqprIIqrrqIp xzzyx  )())(( 0000   

 MIpprrIIprrpIq xzxzy  )22())(( 0000  

 NIqrrqpIIpqqpIr xzyxz  )())(( 0000                                        (7.5) 

 

Assuming that the initial trim condition is, for formal convenience, a 

steady level flight condition with constant speed V  (Vx0,   0,  Vz0), we may write 

 

                            00000  rqpVy ,       and also 000   

    

and the set of Equations (7.5) becomes:   

    

                        ]cos[)( 00  dGz
G WXqVu

g

W
                                                        

                        ]cos[)( 000  dGzx
G WYpVrVv

g

W
                  (7.6) 

                        )sin()( 00  dGx
G WZqVw

g

W
                            

                        LIrIp xzx    

                         MIq y   

                         NIpIr xzz    

 

Instead, if the initial trim condition is a hovering flight condition, we may 

write 

000000  rqpVVV zoyx  
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and 

 

0000   

 

finally, obtaining: 

    

                                     ][)( dG
G WXu

g

W
  

                                     ][)( dG
G WYv

g

W
  

                                     Zw
g

WG )(                                                      (7.7) 

                                     LIrIp xzx    

                                     MIq y   

                                      NIpIr xzz    

 

 

7.5.2.    Stability derivatives 

 

The parameters representing the perturbation from trim values are written 

using a Taylor series with the first terms only (linear terms, small 

disturbance assumption). Then, the expression for the force increment X is: 
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In the expression above we find also the terms θMR, B1, A1, θtr (that are, in 

this chapter, variations from trim values) associated respectively with the 

following control inputs: collective pitch, longitudinal cyclic pitch and 

lateral cyclic pitch of the main rotor, and collective pitch of the tail rotor. 

In order to simplify the notation, we adopt the following compact form: 

 
  11 11

BXAXXrXqXpXwXvXuXX BAMRrqpwvu MR


 

    
trtr

X   

 

where the generic derivative has been written as ∂X   /    ∂a = Xa .   
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Using the same procedure for each term representing an increment, 

finally we obtain the set of expressions: 

 

  
10 1

AXXrXqXpXwXvXuXFF AMRrqpwvuxxa MR
   

      
trB tr

XBX  11

   
  

  
110 11

BYAYYrYqYpYwYvYuYFF BAMRrqpwvuyya MR
 

 

      
trtr

Y    
 

   10 1
AZZrZqZpZwZvZuZFF AMRrqpwvuzza MR

                                                                                                                                   

       wZZBZ wtrB tr
 11

 
 

   
10 1

ALLrLqLpLwLvLuLMM AMRrqpwvuxxa MR
 

 

         
trB tr

LBL  11
                            

        

   
MRrqpwvuyya MR

MrMqMpMwMvMuMMM  0
                                                                                                                 

         wMMBMAM wtrBA tr
 11 11

 
 

   
MRrqpwvuzza MR

NrNqNpNwNvNuNMM  0
                     

         
trBA tr

NBNAN  11 11
 

 

As in fixed-wing aircraft analysis, the derivatives in u, v, w, p, q, r con-

tained in the expressions above are called stability derivatives, and the 

derivatives in θMR, B1, A1, θtr are called control derivatives.  

The derivatives are expressed in a so called normalized form when those 

related to the forces are divided by the mass Mheli of the helicopter, and those 

related to the moments are divided by an appropriate moment of inertia.  

Note that the third and the fifth expressions contain also the derivatives 

∂Z/∂ẇ and ∂M/∂ẇ, related to change of force along the Z-axis and to change 

of moment about the Y-axis respectively, due to the acceleration ẇ (as in 

fixed-wing aircraft analysis); in the expressions above, they are the 

contributions due to an acceleration, remembering that we are considering 

the disturbances calculated as functions of speed. In particular, their 

contributions take into account the downwash effect of the main rotor on the 

horizontal stabilizer. Therefore, ∂Z/∂ẇ and ∂M/∂ẇ are kept when a 

sophisticated investigation is required to perform the analysis; generally, 

they are neglected in order to simplify the treatment.  

The stability derivatives are evaluated in the steady trim conditions; 

moreover, the derivatives are constant. Generally, in hovering flight each 

derivative is obtained by determining the contributions due to the main rotor 

and to the tail rotor. In forward flight, the designer shall consider also the 
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contributions due to the fuselage, to the horizontal stabilizer and to the 

vertical fin. The derivatives may be determined by using various procedures. 

The analytical or classical methodology (appropriate for an initial analysis) 

requires to write the equations of forces and moments for the rotors, for the 

fuselage and empennage (that we wrote in detail in Chapter 5, Section 5.6 

and 5.8) and then to apply the derivative operation. Moreover, from the 

relations obtained in Chapter 5, we know that the rotor force and moment 

derivatives are directly related to the thrust and flapping derivatives.  

 

 

7.5.2.1.    Force perturbation expressions and stability derivatives 

 

Thus, considering the parameters in Figures 5.2b-5.5 and the relations that 

we wrote in detail in Chapter 5, Section 5.8, the force increments X, Y, Z 

along the body axes, that we find into relations (7.2), may be expressed as: 

 

X  =  -TTPPΔa1s  -  a1sΔTTPP  - HTPP  - ΔXFuselage+Tail empennage 

  

               Y  =  TTPPΔb1s  + b1sΔTTPP  + ΔYFuselage+Tail empennage  + ΔTtr 

 

               Z  =  - ΔTTPP   

 

Therefore, for Xu, Xw, Xq we have: 
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and for Zu, Zw and Zq we have: 
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7.5.2.2.    Moment perturbation expressions and stability derivatives 

 

Considering the parameters in Figures 5.2b-5.5 and the relationships that we 

wrote for the moments about the body axes in Chapter 5, Section 5.8, we ob-

tain the expressions for the moment increments (or change in moments) L, 

M, N: 

 

     L = (LMR Δb1s ) + (TTPP hz Δb1s) + (hz b1s ΔTTPP) + (ΔLFuselage+Tail empennage)     

           + (ztr ΔTtr) 

  

    M = (MMR Δa1s) + (TTPP hz Δa1s) + (hz a1s ΔTTPP) - (hx ΔTTPP) + (hz ΔHTPP)   

           + (ΔMFuselage+Tail empennage)  

 

    N = - (TTPP hx Δb1s) - (hx b1s ΔTTPP) + (ΔNFuselage+Tail empennage) + (ltrΔTtr)  

           + (ΔQ) 

      

where S
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  (see Chapter 3, Sect.3.4).   

Therefore, for Lv, Lr we have: 
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For Mw, MB1, we have: 
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For Nr, Nθtr we have: 
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7.5.3.   Notes on the methodology of small perturbations  

 

From the set of Equations (7.4) the reader may appreciate that it is not 

possible, from a rigorous standpoint, to separate a pure lateral-directional 

motion. Consequently, the six equations require to be solved simultaneously.  

The small disturbance assumption has reduced the interaction between 

the longitudinal motion and the lateral motion. Moreover, considering the 

groups of Equations (7.6) and (7.7), it is more clear the link (by means of the 

variables involved) among the first, the third and the fifth equations (they 

define the longitudinal motion), and among the second, the fourth and the 

sixth equations (they define the lateral-directional motion).  

Therefore, in order to simplify the treatment, the two types of motions 

will be analyzed separately, knowing both the approximations made. In the 

developments that follow, for the purposes of this chapter (which provides 

an introduction to stability and control), we will study separately the 

longitudinal motion and the lateral-directional motion. From a mathematical 

point of view, the problem requires to determine the equations by 

introducing the derivatives, and then to perform the stability analysis of the 

equations obtained. 

 

 

7.6.    Dynamic stability in hovering flight 
 

7.6.1.  Longitudinal dynamic stability in hovering flight 

 

Considering Equations (7.7), we start with the longitudinal motion by using 

the expressions with the derivatives; however, we do not take into account 

those stability derivatives that we have neglected by applying the separation 

of the lateral-directional motion from the longitudinal motion. Therefore, we 

obtain: 
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and, finally  
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Then, we rewrite the right-hand side where we insert only the control 

terms; therefore, we obtain: 
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Before proceeding with the analysis of Equations (7.9), it is important to 

remember the meaning of some stability derivatives. This will also help the 

interpretation of other derivatives. In previous analysis of static stability we 

saw that an increment u in forward speed along the X-axis produces an 

increase and a decrease in airspeed at the advancing blade and at the 

retreating blade, respectively. As final result, the main rotor tilts backwards, 

with an increase in thrust, in H-force and in longitudinal aerodynamic drag 

of the fuselage. Then, it is clear that these changes are functions of the 

forward flight speed of the helicopter (higher the flight speed, higher the 

changes). Instead, in hover, a small disturbance u does not involve 

meaningful changes for the force along the Z-axis: then, ∂Z/∂u can be 

neglected. Otherwise, as forward speed increases, this assumption becomes 

not acceptable, because at low speeds ∂Z/∂u < 0, and then, at high speeds 

∂Z/∂u > 0. Moreover, an increment w in speed along the Z-axis will produce 

an effect on the forces along the Z-axis, but will not produce a significant 

effect along the X-axis (especially in hovering flight); then, in this flight 

condition we can accept that ∂X/∂w = 0. Analogously, we can verify that in 

hovering is acceptable to consider ∂Z/∂q =   0, ∂Z/∂ẇ = 0 and ∂M/∂ẇ = 0.  

Using the previous results, the group of Equations (7.9) may be simpli-

fied as: 
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This set of equations is composed of linear differential equations with 

constant coefficients. Now, the objective is to investigate about the typology 

of stability following a disturbance.  

From the theory of differential equations, it is known that some tools for 

the immediate stability verification are available. Remember Routh’s 

criterion for stability that allows us to proceed without the necessity to solve 

the equations involved. However, the criterion (non-quantitative type) 

presents operational limits because it does not allow us to evaluate the entity 

of stability or instability of the system.  
 

 

7.6.1.1.    Equations of motion, state variable form 
 

Let us divide the derivatives by the mass Mheli of the helicopter or by the 

moment of inertia Iy, as follows: 
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By using the same procedure we obtain o

MR
X

, o
BX

1
, 

0

MR
Z , 

0

1BZ , 0

MR
M , 0

1BM .  

By using expressions (7.11), the set of linear differential equations with 

constant coefficients (7.10) can be written in a more compact manner, 

introducing the state vector x.  

Then, the set of equations may be written in matrix form as 

 

BcxAx  d
  

 

where     

 

                 x     the state vector   

           Ad    the stability derivatives matrix 
 

           B      the control matrix 
 

           c       the control vector 
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and also: 
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Now, we assume that θMR = 0, B1 = 0. The characteristic polynomial φ(λ) 

is equal to det(λ I - Ad). Therefore the characteristic equation is obtained 

expanding the following determinant: 

 

φ(λ) = det(λ I - Ad) = 0 

 

where I is the identity matrix, order 4x4.  

Being 
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then, we have 
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                    (7.12a) 

 

Expanding the determinant produces the following characteristic equa-

tion: 

 

                                0234  EDCBA                       (7.12b) 

 

where 
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gMZE

gMD
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uw

u

quw
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0

000 )(
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
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The expressions for the terms C and D are obtained considering that  

 

[ 0000000 )( quququw XMMXMXZC  ] 
 

 

[ )( 000000
ququwu XMMXZgMD  ] 

 

and, for the helicopter with a single main rotor, note that:  
 

[ 00000  ququ XMMX ] 

 

Now, in order to solve the characteristic Equation (7.12b), first of all the 

values of the stability derivatives involved shall be calculated. 

Then, the characteristic Equation (7.12b) has four roots: λ1, λ2, λ3, λ4, 

eigenvalues of matrix Ad, and they may be real or complex conjugate. 

Therefore, the generic root λ has the form λ = η ± iω. 

The general solution for each dependent variable (for example, we choose 

u) is of the following type: 

  
tttt eaeaeaeau 4321

4321
   

 

where a1, a2, a3, a4 are constant that can be evaluated by the initial 

conditions. Consequently, for stability verification tasks, if the real roots are 

negative, then the perturbation is damped; vice versa if the real roots are 

positive, then the perturbed motion results a divergence. In case of complex 

roots, if the real part is negative, then the motion is a damped oscillation; 

vice versa, if the real part is positive, then the motion is a divergent 

oscillation (Figure 7.5). 

In hover, the typical case for a single main rotor helicopter is dominated 

by a couple of real roots and a couple of complex conjugate roots. 

Real roots are related to very damped motions (heavily damped subsidence) 

with a pure convergence, while the complex roots configure a dynamically 

unstable motion, with increasing amplitude oscillations.   

To understand the unstable response it is necessary to remember, for 

example, the response of rotor to a forward speed disturbance:  
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the rotor tilts backwards, producing a nose up attitude of the helicopter. 

Then, a backward motion is generated and, now, the rotor tilts forwards 

causing a nose down attitude of the helicopter. We immediately understand 

that the backward motion is stopped, but a forward motion is starting, so the 

phenomenon restarts in a manner that is divergent and unstable.  

In this case, the meaningful stability derivative is ∂M /  ∂q, and the designer 

shall consider in detail this derivative in order to attenuate the unstable 

motion. 

 

 

 

 
Figure 7.5    Evolutions of perturbed motion 

 

 

Generally, for calculation of the oscillation frequency, the second equa-

tion of the set of Equations (7.10) is considered negligible, because the 

          thalf                          time 0 0 

0 0 

time 

subsidence 

(real root < 0) 

    

divergence 

(real root > 0) 

 
       

damped oscillation 

(complex root, real part < 0) 

 

divergent oscillation 

(complex root, real part > 0) 

 

                                         time 

    tdouble 
                                         time 

     

    

T, period 



              VII. Stability and control, introduction to helicopter flight dynamics       267 
          

 

267 

described motion does not involve relevant changes in altitude. 

Consequently, considering the first equation and the third equation, we can 

write the characteristic equation that provides the oscillation frequency:  

 

0

0

q

u

M

gM
  

 

 

7.6.1.2.    The stability derivatives Mq and Mu in hover 

 

In hover, the only contribution that cannot be neglected for the calculation of 

the derivative ∂M / ∂q is produced by the main rotor. Therefore, considering 

the parameters in Figure 5.2b (Chapter 5), we have: 
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       (for hingeless rotor)  

 

These expressions may be simplified remembering that ∂Z/∂q ≈ 0 in hover. 

In a similar manner, we have: 
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considering that, in hovering flight, ∂Z/∂u ≈ 0. 

To estimate the previous terms, we have to consider that 

 

 
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H
XX TPP
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7.6.1.3     Approximate calculation of longitudinal modes in hovering flight  

                for a medium helicopter 

 

In order to illustrate the previous theory, we will study the approximate con-

trol fixed response in hovering flight at sea level of a typical medium heli-

copter (DL= 350 N/m2; main rotor: four-bladed rotor, radius R = 6.6 m, 

chord c = 0.4 m; tail rotor: radius Rtr = 1.0 m; ltr = 8.1 m). Now, let us con-

sider that the applicable stability derivatives assume the values shown in the 

matrix Ad as follows: 
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Therefore, the characteristic equation (7.12b) becomes: 

 

0)1471.0()4903.0()516.0()0200.2( 234    

 

The roots of the characteristic equation above, or eigenvalues, are: 

 

λ1 = -0.300,            λ2 = -1.861,            λ3,4 = 0.0707 ± 0.5083i   

 

Therefore, the two negative real roots represent two stable responses with a 

thalf (time to half, or time during which the disturbance quantity will half 

itself) equal to: 

 

n
thalf

693.0
  

and: 

 

31.2
300.0

693.0693.0





n
thalf seconds     (for λ1), 

 

37.0
861.1

693.0693.0





n
thalf seconds   (for λ2) 

 

The complex roots λ3 and λ4 (that have a positive real parts) imply an 

unstable oscillatory mode (divergent oscillation) with the following period T, 
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time to double amplitude tdouble, undamped natural frequency ωn, damping 

ratio ζ, and number of cycles to double amplitude Ndouble:  
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Figure 7.6    Roots λ3 and λ4 on complex plane 

 

 

7.6.1.4.    The characteristic roots on complex plane 

 

In the preceding example of calculation we obtained the numerical parame-

ters related to each root, real or complex. From a general standpoint, now it 

is useful to show the relationships among n, ωn and ζ in the complex plane.  
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Figure 7.7 shows a generic root λ = n ± iω in the left half plane (therefore, n 

is negative):  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.7    Relationships among parameters on complex plane 

 

 

7.6.2.    Lateral-directional dynamic stability in hovering flight 

 

Now, for the lateral-directional motion, we saw that the applicable set of 

equations is: 
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                           LIrIp xzx    
 

                            NIpIr xzz    

  

By substituting the expressions of perturbations into equations above, we 

obtain:     

Re (λ) 

Im (λ) 

The left half plane: stable                         The right half plane: unstable 
 

n = - ζ ωn  

 ωn  

ω = ωn (1 – ζ)0.5 

 Period T 

increasing 

 θ 
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             trArpvxzz tr
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Now, let us divide the stability derivatives of the first equation by the mass 

Mheli of the helicopter; thus, we obtain:   
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Considering the second and the third equations of the set (7.13), in order 

to write the group of equations in the required matrix form, let us calculate 

the expression of the term ṙIxz from the third equation; we have: 
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By substituting into the second equation, we obtain: 
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Multiplying by Iz and after appropriate rearranging of terms, finally, is: 
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By applying a similar procedure to the third equation, we can calculate 

the expression for ṙ.  

Therefore, in order to write the previous expressions in a suitable form, 

let us use the following relations: 

 



272          Theory of helicopter flight 

 

         
2

0
)()(

xzzx

pxzpz

p
III

NILI
L




  ;            

2

0
)()(

xzzx

pxzpx

p
III

LINI
N




   

 

         
2

0 )()(

xzzx

rxzrz
r

III

NILI
L




  ;            

2

0 )()(

xzzx

rxzrx
r

III

LINI
N




   

 

         
2

0 )()(

xzzx

vxzvz
v

III

NILI
L




  ;            

2

0 )()(

xzzx

vxzvx
v

III

LINI
N




   

                                                                                                                (7.14b) 

         
2

0
)()(

11

1

xzzx

AxzAz

A
III

NILI
L




  ;            

2

0
)()(

11

xzzx

AxzAx

p
III

LINI
N




   

 

         
2

0
)()(

xzzx

xzz

III

NILI
L trtr

tr 





  ;            

2

0
)()(

xzzx

xzx

III

LINI
N trtr

tr 





   

 

As in the longitudinal motion we just treated, let us rewrite the group of 

Equations (7.13) by expressions (7.14a) and (7.14b); then using the matrix 

notation, we have: 
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Expanding the following determinant 
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leads to the characteristic equation: 

 

02345  FEDCBA   
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In this case, there are five roots; in detail, one is relative to 0  and 

represents a neutral condition of stability (heading mode); other four roots, 

typically, are as follows: 

 

    — two real roots, relative to stable motions (one root 

produces a rolling damped motion, the other one 

produces a yawing damped motion); 

    — two complex conjugate roots, that produce dynamically 

unstable oscillation. 

  

The rolling damped mode is characterized by the derivative Lp, while the 

yaw stable mode by the derivative Nr. 

The unstable oscillation represents changes in helicopter sideways speed and 

in bank angle. 

 

 

 

7.7.    Dynamic Stability in forward flight  
 

7.7.1.   Longitudinal dynamic stability in forward flight 

 

In this flight condition, the set of equations is: 
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Introducing the stability derivatives, the equations become: 
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Also in this case, the derivative ∂M/∂ẇ can be neglected to simplify the 

calculation and, therefore, can be removed from the third equation.  

Using the expressions (7.11), the above set of equations may be written in 

matrix notation (using a similar procedure just applied to hovering flight 

condition): 
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Now, we study the fixed control response (natural modes of motion) of the 

helicopter; therefore, we need to expand the following determinant: 
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that leads finally to the characteristic equation 
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Before analyzing the roots of the characteristic equation, it shall be noted 

that, generally, the values of the stability derivatives can vary throughout the 

flight envelope of the helicopter, from hovering to high-speed forward flight. 

Consequently, the trend of the stability derivatives has an impact on the 

typology of the roots so that the characteristic equation could have two pairs 

of complex conjugate roots or four real roots. 

In the case of two pairs of complex conjugate roots, a response similar to 

that of fixed-wing aircraft is obtained, with a pair of complex roots that 

corresponds to an oscillatory motion, with a long period, defined as phogoid 

mode (Figure 7.8).  

 

 

 

 

 

 

 

 

                                                                 

 

                                                       

                                         

                                                                                         

                                                                                                           

                                                                                         
       

 

 

 

 
 

 

 

Figure 7.8     Phogoid mode 
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The long period oscillatory motion, the phugoid mode, is characterized 

by changes in altitude and speed, with an angle of attack almost constant.  

In order to understand the motion represented, let us assume that, 

following a disturbance, the altitude increases: now, during the climb, a 

decrease in speed and the action produced by the weight take the helicopter 

to descend. Decreasing the altitude, the speed and the rotor thrust increase so 

that the oscillation restarts once again, and generally the motion is unstable. 

For this case, the very relevant stability derivatives are .,,, 000
uuq

o
w ZMMM  

 

 

7.7.1.1.    Approximate calculation of longitudinal modes in forward level 

                flight for a medium helicopter 

 

For example, we will study the approximate control fixed response of a 

utility helicopter (see also calculation in Section 7.6.1.3) in straight and level 

flight at V=100 knots, sea level, where we assume that the characteristic 

equation (7.15) becomes: 

 

0)2414.0()2205.0()4333.0()3400.3( 234    

 

The roots of the characteristic equation above, or eigenvalues, are: 

 

λ1 = -0.4266 ,            λ2 = -3.2195,            λ3,4 = 0.1530 ± 0.3903i   

 

Therefore, in this case we have two negative real roots which represent two 

stable responses with a thalf   equal to: 

 

n
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693.0
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and: 
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
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n
thalf seconds   (for λ2) 

 

From results above, we see that the stable modes are short-period responses.  
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The complex roots λ3 and λ4 (that have a positive real parts) imply an 

unstable mode (the phugoid) with the following period T, time to double 

amplitude tdouble, undamped natural frequency ωn and damping ratio ζ:  
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Example of longitudinal root locus plot as a function of forward flight speed 

In Sections 7.6.1.3 and 7.7.1.1 we studied the longitudinal natural modes, in 

hovering flight and at V= 100 knots respectively, of a medium reference 

helicopter with a hingeless rotor, where we assumed also uncoupled longitu-

dinal and lateral-directional motions. Again, we remember that this a critical 

assumption for the helicopter, because it is characterized by an asymmetric 

configuration. The fully coupled equations can show significant different 

results both in longitudinal and lateral-directional eigenvalues with respect to 

results provided by the analysis of the uncoupled set, from the hovering to 

the forward flight. This must be always considered when a rigorous analysis 

shall be performed. 

In particular, the following derivatives, which are neglected in the uncoupled 

analysis, shall be considered: 

Lu (roll moment due to longitudinal velocity), Lw (roll moment due to verti-

cal velocity), Lq (roll moment due to pitch rate), Mv (pitch moment due to the 

lateral velocity), Mp (pitch moment due to the roll rate), Nw (yaw moment 

due to the vertical velocity), and the other control derivatives.  

     Figure 7.9 illustrates the influence of the forward speed, from hovering to 

forward flight at V=100 knots at sea level, on the longitudinal eigenvalues 

for the helicopter used for calculation. 
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Figure 7.9     Example of longitudinal root locus as a function of forward speed  

 

 

7.7.2.    Lateral-directional dynamic stability in forward flight 

 

In a similar manner, the set of equations for lateral-directional flight con-

dition is: 
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By substituting the expressions for perturbations, the equations above 

become:                    
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and then: 
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By using expressions (7.14a) and (7.14b) and by means of the procedure 

applied to the previous cases, we can rewrite the equations above, and the 

matrix Ad becomes: 
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Therefore, we obtain the following determinant: 
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and finally, we have the characteristic equation 
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02345  FEDCBA   

where: 
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As in the hover, the characteristic equation has one root (λ=0) relative to 

a neutral condition. Then, generally it presents other two real roots and two 

complex roots, as follows: 

 

— a rolling damped motion (the roll mode) and a spiral 

motion (the spiral mode) correspond to the two real roots; 

 

— a lateral-directional oscillation, LDO (therefore, an oscilla-

tion in roll and in yaw, with a pitching), called ‘dutch-roll’, 

corresponds to the pair of complex roots, similar to the mo-

tion defined for the fixed wing aircraft. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.10     Dutch-roll oscillation 
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Example of lateral-directional root locus plot as a function of forward flight 

speed 

Figure 7.11 illustrates the typical influence of the forward speed, from the 

hovering flight to high speed flight, on the lateral-directional eigenvalues for 

a medium helicopter. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.11  Example of lateral-directional root locus as a function of forward speed 
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7.8.    Helicopter control 
 

7.8.1.  Stability, control and flying qualities  

 

The study of helicopter control is based on the analysis of the whole aircraft 

response following the application of one or more control inputs by the ‘hu-

man’ pilot or by an automatic system (auto-pilot). 

Through the flight controls, the pilot shall perform a flight manoeuvre or 

shall compensate adequately an atmospheric disturbance (as it can be a gust). 

Then, it is necessary to verify the helicopter response in the entire spectrum 

of manoeuvre and for each aircraft configuration.  

Moreover, it shall be noted that stability and manoeuvrability (capability 

of rapid response to a pilot action) are substantially opposite characteristics, 

because an aircraft with high stability ‘suffers’ from low manoeuvrability. 

From this standpoint, required stability and manoeuvrability will vary with 

the helicopter type and with the flight mission requirements.  

Generally, the reference specifications for stability and control require-

ments of V/STOL aircraft define various classes versus weights and ma-

noeuvrability (light, heavy, low/medium and high manoeuvrability).  

Typically, the specifications define also the flying qualities in terms of 

defined levels, related to the capability to complete the flight mission.  

For example, typical levels are described as follows: 

 

 

 

 

 
 

Level 1 
 

flying qualities are adequate 

 

Level 2 
 

flying qualities are adequate, but 

increment in pilot work load is 

required 

 

Level 3 
 

flying qualities allow the 

helicopter to fly safely, but  intense 

pilot work load is required 
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7.8.2.    Longitudinal control in hovering flight; one degree of freedom  

             approach 

 

The application of a control by the pilot requires (in general, both in 

hovering and in forward flight) an additional action of compensation through 

other controls in order to perform correctly a manoeuvre (in some cases, also 

an appropriate mix of controls to minimize the secondary effects is present). 

For example, a change in collective pitch in hover generates, of course, a 

change in rotor thrust (the primary effect), but causes also a change in rotor 

torque that shall be counteracted acting through the pedals in order to 

maintain the flight direction.  

After this introduction (to be always present for an entire and advanced 

analysis), we will obtain very useful information also by simplified models. 

In particular, in the pages that follow we will analyze some cases of helicop-

ter response by an approach with only one degree of freedom.  

Therefore, we can use Equations (7.10) with the application of the only 

one forcing B1 and with the assumption of one degree of freedom about the 

pitching axis. Then, in order to analyze the helicopter attitude, the third 

equation of (7.10) can be written as: 
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Dividing by Iy, using the normalized notation adopted for the relation-

ships (7.11), and going into Laplace domain (Appendix C), we obtain: 
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The expression (7.16) is the transfer function of the pitch rate q due to the 

longitudinal cyclic pitch B1. 

Fixing the forcing changes and performing the inverse transformation, fi-

nally we have the relationship between q and B1 in time domain.  

In order to complete the treatment, note that 
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Now, let us consider the case where a vertical gust of magnitude wgust is 

developed; then, consider the second equation of the group of Equations 
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(7.10), and by introducing the disturbance wgust and taking into account only 

the one degree of freedom to the vertical movement, we obtain:  

 

    0 gustw
G wwZw

g

W
  

 

and finally 
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As in the previous case, if we know the changes in disturbance, then we 

can calculate the approximate response of the system by means of the 

described methods.  

Note that it is:  
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7.8.3.    Lateral-directional control in hovering flight; one degree of freedom  

             approach                         

 

If we consider the forcing θtr and only the degree of freedom about the 

yawing axis, the third equation of set (7.13) can be written as: 
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obtaining 
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By using the previous assumption, the relation (7.16) describes the 

response following the forcing (collective control input for the tail rotor). 

In particular, if we assume that the forcing changes according to the 

following rule: 
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and then 
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finally, in the time domain we obtain:  
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