Chapter 7

Stability and control,
introduction to helicopter flight dynamics

7.1. Introduction

The properties analyzed in this chapter are concerned with the response
of the helicopter after the perturbation of a steady trimmed flight condition,
produced by the action of a gust or the action of the pilot through flight
controls.

In particular, helicopter behavior is expressed in terms of stability and
control characteristics, which configure the flight qualities; these topics con-
stitute a significant part of the flight dynamics.

This chapter introduces some fundamental problems of helicopter
stability and control by means of theories using typical assumptions to
simplify the approach.

Therefore, as in the basic analysis of fixed-wing aircraft, we assume the
following for the disturbed motion of the helicopter: small disturbances and
the separation of longitudinal and lateral motions. For the latter case, we saw
that its consequences represent major critical issues for the analysis applied
to the helicopter (remember the natural mating between the two types of
motion due to the modalities of main rotor flapping). For a conventional
helicopter configuration with a single main rotor, which we will analyze in
this chapter, the tail rotor confers asymmetry to the whole rotorcraft, which
requires solving all the equations of motion simultaneously, for a rigorous
approach.

However, it is general practice to set up basic analysis on the separation
of the two types of motions, for the following reasons: considerable problem
simplification and interesting obtained results. Therefore, the treatment that
follows adopts the assumptions above.

241



242 Theory of helicopter flight

Finally, the arguments incorporate methodologies and procedures ready
to be implemented on the computer.

7.2. The single-degree of freedom dynamic system

Before introducing the helicopter stability, it is very useful to review the
properties of the system composed of a mass, a spring and a damper, that can
be modelled by a second-order differential equation. This system can be
used to understand and to represent many dynamic systems, and it provides
results which are needed for the presentation of the arguments that follow.
Thus, in the general model (shown in Figure 7.1) a force F(r), that is the
forcing function or the applied force, acts on the mass m; in x-direction,
there are also a linear force provided by the spring and a damping force,
proportional to the mass velocity, provided by the damper.
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Figure 7.1 Mass/spring/damper dynamic system, single-degree of freedom
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Homogeneous solution or free response
Considering that m(dx’/df) is the inertia force, the following second-order
differential equation describes the dynamic system shown in Figure 7.1:

It is an ordinary differential equation with constant coefficients.
The solution of the homogeneous equation

provides the transient or free response of the system. The solution is found
by substituting x = 4e* into the equation; therefore, we obtain:

el

which has the following roots:

v

Therefore, the solution of the homogeneous differential equation is:

x(t)=a e +a,e™

ST}, HeHET)

and it represents the free response of the damped system, where a; and a are
constants and are determined from the initial conditions. This solution de-
pends on the values of m, ¢ and £. In particular, consider that if we have

)<\

x(t)= ali_(
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the solution is

od BT [T

0= s [ B (2] v msin B} (2]

This solution describes a damped sinusoidal motion, characterized by the
following damped natural frequency w:

(e
)

the solution x(#) describes a critical damped motion; in this case, we have

Consider that if we have

2
Cor =2 [’"—k} =2km

m

where c., is defined as the critical damping constant, and the ratio {

is defined as the damping ratio.
Now, let us write the homogeneous equation for the undamped system (¢=0):

2
mdi+kx=0
dt
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By using the previous procedure, we obtain the following solution:

x(t)= Ccos\/@-t+Dsin\/@~t =E Cos\/@-t+(p

which describes a steady sinusoidal motion, characterized by the following
undamped natural frequency wy:

f

Finally, Figure 7.2 shows all the solutions as functions of m, ¢ and k.
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Figure 7.2 Types of free response of the dynamic system with a single-degree of freedom



246 Theory of helicopter flight

Finally, using the parameters defined above, the second-order differential
equation with constant coefficients that describes the mass/spring/damper
dynamic system shown in Figure 7.1 can be written as:

dx? dc 5, 1
—+2lw, —+ =—Fl¢
%o, opx=—F()

Therefore, the damped natural frequency o, the damping ratio { and un-
damped natural frequency w, are determined from the analysis of the free re-
sponse of the system. In fact, note that the solution of the following
characteristic equation

2 +28m,A+wf =0

can be written, in a general form, as

/11’2 =—(m, Tiw, 1 —52

Particular solution corresponding to a sinusoidal applied force
Now, let us consider the case where the forcing function F(#)#0

dx? dx > 1
—+2lw, —+ =—Fl¢
%, opx=—F(1)

and is equal to F(¢)/m=Focoswt. Therefore, the equation of the dynamic sys-
tem (with a single-degree of freedom) becomes:

d® dx
- 4 2 _
dt S dt

+ a),%x = [y cosarn

Before continuing, let us remember that the solution of the second-order
differential equation is the sum of the solution of the homogeneous equation,
that represents the transient motion, with F(£)=0, and of a particular solution
of the complete equation, the steady motion, with F(#)#0.

Hence:

X(8) = [X(O) Lnomagencous e+ [X(E) Jparicutar somaion
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We have that: {[x()]ucuor somion = Xy COS(wst + @)}, where the response ampli-
tude Xy and the phase angle ¢ are given by the following expressions:

2lm,0
f :& 1 . ¢:—tan_1 %
n \/(a),f —a)?)z +4§’2a),fa)} Op — @y

These relations define the frequency response of the system.
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Figure 7.3 Amplitude and phase, frequency response
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Transfer function of the mass/spring/damper system
Considering that the equation of the system is

dx? dx 5 1 _
E'Fzé/a)na-f'a)nx—m}?(t)—f(t)

then, let us write

dx .
— =x=xlt
i)
Therefore, we obtain

d.xl .

— =X =X

% g =)

de

—t 28w, xs + 0, = f(t)

Choose the initial conditions as

write the Laplace transform of x(#) and of A¢):
£la(e)]=1(s)
and

5{% +20@w,x, + a),%xl} =9 [%} 20w, £ [xz (t)]+a)2n ¢ [xl (t)] ~Uls)

From the relations above we have:

S2Y(s) + 2Cwn sY(s) + w?n Y(s) = U(s)
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Finally, the transfer function G(s) of the system, that is the ratio of the output
and the input, is equal to:

State-space modeling
The following relations

X :xz(t)
Xy + 2@, + oy =f(f)

can be written in matrix form as

iHo il o

where u(f)=f(¢). We have:

X =Ax+Bu

P S R
x=|1], A=| , B=
X2 — @, _24@1 1

X1 .
and x= is the state vector.
X2

with

The system is fully described by the state-space matrices A and B.
Now, we know that the free response of the system, where f{f)=0, may be
studied by the equations:

X =Ax
The substitution of x(z) =x jeif't into equations above gives

(A —-A jl)x ;=0 where I is the identity matrix.
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Now, the vector x;is the eigenvector associated with the eigenvalue 4; of the
matrix A. The solution is the following linear combination:

x(t) = Zc X j€ At

(cjis a constant that is fixed by the initial conditions)

Control form of a second-order differential equation
If the system has mass m=1, then it can be visualized by the diagram in
Figure 7.4:
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Figure 7.4 Control form of the second-order differential equation

7.3. Helicopter static stability and dynamic stability

The stability, in general terms, is defined as the capability to restore an initial
trim condition that has been perturbed by a particular cause.

Static stability is defined as the initial tendency of the system to return to
the trim condition. Then, dynamic stability is defined as the tendency of the
system to restore the trim condition as the time goes on. In other words, the
static stability studies the initial motion (initial response) of the aircraft after
the perturbation. Instead, the dynamic stability is concerned with the evolu-
tion of the aircraft motion versus time, in relation with the tendency to return
to or to leave the trim condition that has been perturbed.
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It should be noted that an aircraft can be statically stable but dynamically
unstable. However, the static stability is a necessary condition but is not a
sufficient condition for the dynamic stability.

7.4. Helicopter static stability

In the pages that follow we will discuss some fundamental cases related
especially to the main rotor properties, because it supplies a relevant
contribution to the stability characteristics of the helicopter as a whole.

7.4.1.  Stability following forward speed perturbation

In the context of the aircraft response immediately following a disturbance,
as first case, we treat the response to speed perturbation in the direction of
the motion. Supposing to analyze a forward flight condition, for the reason
we saw in the previous chapters, an increase in forward speed will involve
an increase of the rotor flapping with backward inclination of rotor disc.
Therefore, the rotor thrust is characterized by a component in the tail
direction that opposes the disturbance: the rotor supplies a contribution to the
static stability. The fuselage, instead, can provide a contribution to stability
or a contribution to instability, depending on the direction of the generated
acrodynamic forces (lift and drag). It is also clear that an additional
contribution to stability can be provided by the horizontal stabilizer,
depending on its dimensions and position on the entire helicopter. These
considerations are valid for both forward and hovering flight, taking into
account the fact that as the speed decreases the contribution from the
fuselage and from the horizontal tail tends to decrease (until being negligible
in estimation at very low flight speed).

7.4.2. Stability following vertical speed or incidence perturbation

Assume a steady level flight condition; as a consequence of a vertical gust,
the main rotor blades have an increase in incidence and the rotor thrust also
increases. The total effect on the advancing and retreating blades
(considering also the difference in relative speed) produces backward
flapping of the rotor, with the generation of a nose up pitching moment. In-
deed, after the inclination of the rotor disc, this moment is due to the thrust:
the rotor is statically unstable. It is clear that the rotor instability grows as the
forward speed increases. The considerations discussed above for the fuselage
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are still valid, but generally its contribution is in terms of instability. The
only one contribution to stability is provided by the horizontal stabilizer: this
contribution grows as the forward speed increases. Finally, note that the
availability of accurate methods for analysis of aeroelastic phenomena of
rotor blades and the use of advanced composite materials can allow the
designer to obtain appropriate load distributions to contain the unstable
effect of the rotor on the response to the incidence perturbation.

7.4.3. Stability following yawing perturbation

Assuming an attitude with a yawing angle different from zero, a change in
the incidence of the tail rotor is obtained; this variation provides a damping
effect, similar to that of a vertical fin (known as ‘fin effect’). Therefore, the
vertical fin provides an important contribution to the stability, because it
responds generating a lateral force that produces a consequent yawing
moment. This moment confers stability.

However, different from fixed-wing aircraft, it shall be noted that
evaluation regarding the fin (and the tail rotor) of the helicopter shall take
into account the effects due to the main rotor wake on the empennage. In-
creasing the forward speed, we shall consider also the contribution from the
fuselage (generally neglected at low flight speed): its action can be of stable
or unstable type, depending on the disturbance, the position of the centre of
gravity and the airframe geometry.

7.5. Helicopter dynamic stability

Procedures and methods for the helicopter stability analysis (from the de-
termination of equations of motion to the application to the flight test issues)
have been developed, since early studies, by extending the methodologies
applied to the fixed-wing aircraft. Therefore, also the topic that follows is
characterized by an initial formal setting clearly common for rotary-wing
and fixed-wing aircraft, and by a subsequent stage, where we find the typical
problems to be solved for the helicopter.

Again, we recall Equations (5.5b) determined in Chapter 5, with the rigid
body assumption. Now, for an accurate assessment, each rotor blade has its
own degree of freedom, which provides a contribution to the perturbed
motion. Consequently, for the helicopter with a single main rotor, over the
six equations of motion as for a fixed-wing aircraft (three for the translation
and three for the rotation about the reference axes) we shall add, in a basic
approach, as minimum other three equations: one for rotor longitudinal
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flapping, one for lateral flapping, and one for conic attitude of the rotating
blades. Remember that due to rapid response of the blades versus the whole
airframe, the rotor can be assumed as a compact generator of forces and
moments, neglecting the motion of the single blade. Then, this is a quasi-
static condition of motion, by which, now, the equations are only six
(because there are six active degrees of freedom). Obviously, this condition
cannot be maintained in those cases where the designer needs to study
aeroelastic phenomena or resonance. However, those cases are beyond the
purposes of the present book. From the previous notes and assumptions, we
recall the set of Equations (5.5b), now with the new number (7.1):

W
<V, +0oV,-0V)=F, +W,
P :

W. .
<V, -0V, +oV)=F, +W,
p )
W v (7.1)
—V, +oV, -0V )=F,+W, .

P ,

ol —a)ya)z(l_\, -1.)— (o, + a)xa)y)ljCZ =M

Xa

. 2 2
ol, —oo, -1)- (o] -0)l, =M,

ol -oo (. -1)-(o,-0,0)] =M

za

with the auxiliary Equations (5.5b):

b= o, + o, sin®1gd + w_ cosP1g®
0= o, cos® —@_sin®

Y =ow,sin®secO® + w, cosPsecO®

Equations (7.1), representing the balance of forces and moments acting
on the helicopter, constitute the basic model to study the aircraft motion. We
remember that the equations have been written with respect to the body axes,
with the following assumptions: rigid body, constant mass, existence of the
aircraft plane of symmetry.

From a general point of view, each Equation (7.1) is related to a degree of
freedom, having therefore three degrees of freedom for translation and three
degrees of freedom for rotation. Going in depth into dynamic stability analy-
sis, we will discuss the fixed control cases. The classical approach (that is
followed in the present book) considers that the action by a gust or the action
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to perform a manoeuvre generate an unsteady flight condition, analyzed
superimposing a ‘disturbance’ to the initial steady condition of motion.
From a mathematical point of view, this approach requires to consider the
terms in the set (7.1) equal to the sum of the value in the initial steady trim
condition and the value of perturbation. Therefore, we can write:

V.=V, +u V,=V,+v V.=V,+w

@, =py+tp @, =qy+q W, =r+r

Fu=Fog+X  F,=F,+Y F,=F,+Z  (12)
M =M ,+L Mya :Myo +M M, =M_,+N
0=0,+0, O=P, +D, Y=Y¥,+Y¥,

where the terms with subscript ‘0’ represent the initial condition of motion
and the second term (we take, for example, u) defines the disturbance.

By using expressions (7.2), the first equation of the set (7.1) can be
written in the following form:

%[(Vxn +u)+(qo + Voo + W)= (15 + 1)V + V)] = (Fp + X) +

and,

w_ . .
E[(on +u) +(qoV0 +qow+qVog +qW) — (Vo + 1V, + Ry +1v)] =

= (ECO +)Q—Wsin(®0 +®d) (73)

Now, consider that in the trim condition, before introducing the
disturbance, we can write the following expression:

w,. . .
?G(on +qoV.0 —1Vy0) = Frg —W5sin®,

Therefore, the Equation (7.3) can be written as:



VIL. Stability and control, introduction to helicopter flight dynamics 255

w u+qV,y+qow+gw—rV ,—ryv—rv)=X —W[sin(®, + ®,)—sin®, ]
P q7:0 T4 yo —To 0 d 0

Operating in a similar manner on the other five equations and using the
expressions (7.2), finally, we obtain the following set of equations:

&(u+qw—rv+Vzoq+q0w—VyOr—vr0) =X -W;[sin(®y +O,)—sin O]
g

&(\'}+ur—wp+V r+ru—V,op—pow) =Y +Wgcos@y +0,)sin(D, +D,)+
s x0" T 1y 0 0 G 0 TYy 0t%y
—c0s®, sin D]
%(W+vp—uq+Vy0p+vp0 —V.0q—qo4) =Z+Wg[cos@, +0O,)cos(@, +D,)+
—c0s®; cosD |
Pl —(qor+ryq+qr)l, —1.)=(F+ pog +qop+ pg)l,. = L

I, —(por+rop+prNI. —1,)—Qryr=2pop—p° +1°) . =M
"l —(poq+qop+ PP, —1,)—(p—qor —19qg—qr)l,. =N (7.4)

The system (7.4) is the set of equations for the perturbed motion in the
general form.

7.5.1.  Small disturbance theory

The perturbed dynamics is based on the resolution of the set of Equations
(7.4), once the initial condition of motion has been fixed and the forces and
moments acting on the aircraft have been defined for each scalar equation. In
order to approach this typology of problem, methods and assumptions shall
be obviously defined in accordance with the task to be accomplished.
Considering the notes discussed in the previous pages, the small disturbance
assumption can be valid and applicable to many problems and constitutes the
initial approach for many dynamic analyses due to the simplification of the
mathematical models and to the interesting results which can be obtained.

From a mathematical standpoint, this assumption allows the disturbance
quantities and their derivatives to be considered small, and, consequently, we
can neglect their products and squares into Equations (7.4). Moreover,
angles are considered so small that the cosine can be considered equal to 1,
and the sine and the tangent equal to the value of the angle expressed in
radians. Therefore, let us use the following expressions:
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Si.n(@O + ®d) ~ Si.n @0 +®d COS@O
cos@®, +0,) = cos®, -0, sin O,

Now, Equations (7.4) become:
wg .
?G(u +Vo0q+qow=V,or —rpv) = X =W5[©, cosO]

SV or +ru—V,op— pow) =Y +W5[®, cos®, cos®, — O, sin @ sin D, ]
g

?G(W+Vy0p+p0v—Vx0q—q0u) =7 -Wg(®, cos®sin®, + O, sin @, cosd,)
pl —(qor +rioQ)y, —1.)—(F+ pog +qop)I .. = L
gl = (por +rop)1; —1,)—(2ror =2pyp)l,. =M
", —(poq+qop)U —1,)—(p—qor =11, =N

(7.5)

Assuming that the initial trim condition is, for formal convenience, a
steady level flight condition with constant speed V (Vx, 0, V20), we may write

Vio=Dy=90=7,=0, andalso ¥, =®;=0
and the set of Equations (7.5) becomes:
W, ..
?(U +V.09) = X =W5[0, cosO, ]
Ws ..
?(V+Vx0r—Vzop): Y+W,[®,cosO,] (7.6)

Y6 (io-V,0q)=2-W,(©,5in0,)
g

pl—il_ =L
gl, =M
A~ pl. =N

Instead, if the initial trim condition is a hovering flight condition, we may
write

onszonzo:po:%:”ozo
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and

finally, obtaining:

w. .

Y iy = x -w,l0,]

g

Ye )=y +m, 0,

g

Ws =z (7.7)
g

p]x—ﬂxzzL

gl, =M

7;‘12 _p]xz :N

7.5.2.  Stability derivatives
The parameters representing the perturbation from trim values are written
using a Taylor series with the first terms only (linear terms, small

disturbance assumption). Then, the expression for the force increment X is:

oX ' oX oX oX  oX | oX oX 1'¢
=—u+ + + +—r+

X="u+— v+t Wt pt——gt—7+— Oy +— A +
o Taw Tt el o 60, MR o4
+alBl+al9”

o8, " 50

1

In the expression above we find also the terms Gur, B1, A1, 0, (that are, in
this chapter, variations from trim values) associated respectively with the
following control inputs: collective pitch, longitudinal cyclic pitch and
lateral cyclic pitch of the main rotor, and collective pitch of the tail rotor.

In order to simplify the notation, we adopt the following compact form:

X=Xu+Xyv+X w+X p+X g+ Xr+X, 0,,+X,4+X;B +
+X9“€tr

where the generic derivative has been written as 0X/0a = X, .
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Using the same procedure for each term representing an increment,
finally we obtain the set of expressions:

F,=F,+Xu+Xy+X w+X p+X g+ Xr+X, 0,,+X,4
+ X, B +X,0,

F,=F,+Yu+Yv+Y w+Y p+Yqg+Yr+Y, O,+Y, 4+Y;B
+1,0,

F,=F,+Zu+Zy+Z w+Z,p+Z q+Zr+7Z, On+7Z, 4
+ZyB+Z7, 0, +Z,w

M, =M +Lu+Lv+Lw+L,p+Lg+Lr+L, 0,,+L, 4
+ LBl B, + Lglr o,

M, =M, +Mu+My+M w+M,p+M,g+Mr+M, O,
+MA]A1 +MB]BI +Mz9,,.gtr +MWW

M, =M ,+Nu+Nyv+Nw+N,p+N,g+N,r+N, 6,
+NA1A1 +NBIB1 +N6,,.Htr

As in fixed-wing aircraft analysis, the derivatives in u, v, w, p, g, r con-
tained in the expressions above are called stability derivatives, and the
derivatives in Our, B1, A1, O, are called control derivatives.

The derivatives are expressed in a so called normalized form when those
related to the forces are divided by the mass M. of the helicopter, and those
related to the moments are divided by an appropriate moment of inertia.

Note that the third and the fifth expressions contain also the derivatives
0Z/0w and 0M/ow, related to change of force along the Z-axis and to change
of moment about the Y-axis respectively, due to the acceleration w (as in
fixed-wing aircraft analysis); in the expressions above, they are the
contributions due to an acceleration, remembering that we are considering
the disturbances calculated as functions of speed. In particular, their
contributions take into account the downwash effect of the main rotor on the
horizontal stabilizer. Therefore, 0Z/0w and OM/Ow are kept when a
sophisticated investigation is required to perform the analysis; generally,
they are neglected in order to simplify the treatment.

The stability derivatives are evaluated in the steady trim conditions;
moreover, the derivatives are constant. Generally, in hovering flight each
derivative is obtained by determining the contributions due to the main rotor
and to the tail rotor. In forward flight, the designer shall consider also the
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contributions due to the fuselage, to the horizontal stabilizer and to the
vertical fin. The derivatives may be determined by using various procedures.
The analytical or classical methodology (appropriate for an initial analysis)
requires to write the equations of forces and moments for the rotors, for the
fuselage and empennage (that we wrote in detail in Chapter 5, Section 5.6
and 5.8) and then to apply the derivative operation. Moreover, from the
relations obtained in Chapter 5, we know that the rotor force and moment
derivatives are directly related to the thrust and flapping derivatives.

7.5.2.1.  Force perturbation expressions and stability derivatives
Thus, considering the parameters in Figures 5.2b-5.5 and the relations that
we wrote in detail in Chapter 5, Section 5.8, the force increments X, Y, Z
along the body axes, that we find into relations (7.2), may be expressed as:

X = -TrepAays - aisATrep - Hrpp - AXFuselage+Tail empennage

Y= TTPPAbls + b]sATTPP + AYFuselage+Tail empennage + ATtr

Z = -ATrpp

Therefore, for X,, X, X, we have:

ox - X =_T Oayg —a OTrpp  OHppp OX Fusstail_emp
u u PP, 1S 75, 2 Y

ox _ X =_T Oayg a OTypp _ OHypp _ OX Fusttait_emp
EW w P g s T4 o "

aiX =X = _TTPP aalS —ag aT'TPP _ aI—ITPP _ aXFuS+tailiemp
og * oq oq  oq oq

and for Z,, Z,, and Z, we have:

6£:Z :_aTﬂ
ou " Ou
67222 _OT7pp
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oz _, __ oTyy
oq 1 oq

7.5.2.2.  Moment perturbation expressions and stability derivatives

Considering the parameters in Figures 5.2b-5.5 and the relationships that we
wrote for the moments about the body axes in Chapter 5, Section 5.8, we ob-
tain the expressions for the moment increments (or change in moments) L,
M, N:

L= (LMR Abls) + (TTPP hz Abls) + (hz bls ATTPP) + (ALFuselage+Tail empennage)
+ (Ztr ATn)

M= (Mur Aais) + (Trep h: Aais) + (h: ais ATrep) - (he ATrpp) + (h: AHrpp)

+ (AM Fuselage+Tail empennage)

N=- (TTPP hx Abls) - (hx bIs ATTPP) + (ANFuselage+Tail empennage) + (ltrATtr)
+(AQ)

M

N dayg

a;g (see Chapter 3, Sect.3.4).

Therefore, for L,, L, we have:

OL -
oL _; _ Ly s Ly, Trpp D h.bg 675519 + F”Sgi’l—e”w +2z, Ty

61)1 61)1 5TTPP aLFus+taiZ emp 6];
—=L. =L +h.T, S+h + —+ -
ar MR ™5, T ATPP TS  bis or or Zm or

For M,,, M;, we have:

oM oay, Mrpp Mypp OHpp 4 oMy +t_e

— My s,  Trpp—= +h.ayg +h, +h,
ow ow ow ow ow ow ow
oM
M = M8 Oay + I Typp s Oay +hoayg OTrpp +h, OTrpp +h, OHrpp L A Ft e
0B, OB, 0B, 0B, OB, 0B, 0B,

For N,, Noi» we have:

ON, .
6_N = N — TTPPh ablS beS aTnJP Fus+tail _emp 4 ltr 87}, +6_Q
or or or or or  or
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=— +
90, ' 96, 96, 96, 06, 06,

ON, .
ON — NHr TTPPhx ablS _hxbls aTTPP + Fus+tail _emp +1 87;,, aQ

7.5.3. Notes on the methodology of small perturbations

From the set of Equations (7.4) the reader may appreciate that it is not
possible, from a rigorous standpoint, to separate a pure lateral-directional
motion. Consequently, the six equations require to be solved simultaneously.

The small disturbance assumption has reduced the interaction between
the longitudinal motion and the lateral motion. Moreover, considering the
groups of Equations (7.6) and (7.7), it is more clear the link (by means of the
variables involved) among the first, the third and the fifth equations (they
define the longitudinal motion), and among the second, the fourth and the
sixth equations (they define the lateral-directional motion).

Therefore, in order to simplify the treatment, the two types of motions
will be analyzed separately, knowing both the approximations made. In the
developments that follow, for the purposes of this chapter (which provides
an introduction to stability and control), we will study separately the
longitudinal motion and the lateral-directional motion. From a mathematical
point of view, the problem requires to determine the equations by
introducing the derivatives, and then to perform the stability analysis of the
equations obtained.

7.6. Dynamic stability in hovering flight

7.6.1. Longitudinal dynamic stability in hovering flight

Considering Equations (7.7), we start with the longitudinal motion by using
the expressions with the derivatives; however, we do not take into account
those stability derivatives that we have neglected by applying the separation

of the lateral-directional motion from the longitudinal motion. Therefore, we
obtain:

%(a)=X—WG[®d]

Y (iy=z
g

gl, =M
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and, finally
(W,
?G(a) =Xu+ X w+ X, g+X, 0,,+X,B-W,]0,]

< % (W) = Zu+ Zw+Zv+ Z,q+Z, O+ Zy B (7.8)

g, =Mu+M w+Mw+Mqg+M, O,,+MyB

Then, we rewrite the right-hand side where we insert only the control
terms; therefore, we obtain:

—%(d)—WG[G)d]+qu+XWW+qu :_XGMRQMR_XBIBl

- % W +Zu+Zw+Zw+Z q=~2Z, O,p—2Z,B (7.9)

—ql, +Mu+M w+Mw+M,g=-M, 6,,—M;B

Before proceeding with the analysis of Equations (7.9), it is important to
remember the meaning of some stability derivatives. This will also help the
interpretation of other derivatives. In previous analysis of static stability we
saw that an increment u in forward speed along the X-axis produces an
increase and a decrease in airspeed at the advancing blade and at the
retreating blade, respectively. As final result, the main rotor tilts backwards,
with an increase in thrust, in H-force and in longitudinal aerodynamic drag
of the fuselage. Then, it is clear that these changes are functions of the
forward flight speed of the helicopter (higher the flight speed, higher the
changes). Instead, in hover, a small disturbance u does not involve
meaningful changes for the force along the Z-axis: then, 6Z/0u can be
neglected. Otherwise, as forward speed increases, this assumption becomes
not acceptable, because at low speeds 0Z/0u < 0, and then, at high speeds
0Z/0u > 0. Moreover, an increment w in speed along the Z-axis will produce
an effect on the forces along the Z-axis, but will not produce a significant
effect along the X-axis (especially in hovering flight); then, in this flight
condition we can accept that 0X/ow = 0. Analogously, we can verify that in
hovering is acceptable to consider 0Z/0g =0, 0Z/0w = 0 and oM/ow = 0.

Using the previous results, the group of Equations (7.9) may be simpli-
fied as:
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w, .
—?G(u)—WG[Gd]+qu+qu ==X, 0= X3 B,

—%(W)nLwa:—Zg On—2Zs B (7.10)
g MR 1

—ql, +Mu+M w+M qg=-M, 6,,—M;B,

This set of equations is composed of linear differential equations with
constant coefficients. Now, the objective is to investigate about the typology
of stability following a disturbance.

From the theory of differential equations, it is known that some tools for
the immediate stability verification are available. Remember Routh’s
criterion for stability that allows us to proceed without the necessity to solve
the equations involved. However, the criterion (non-quantitative type)
presents operational limits because it does not allow us to evaluate the entity
of stability or instability of the system.

7.6.1.1. Equations of motion, state variable form

Let us divide the derivatives by the mass M. of the helicopter or by the
moment of inertia /,, as follows:

M
Mheli Mheli ]y Iy 1)’

By using the same procedure we obtain X ;’MR , X l(;l , Z gm , Zg} , M gm , M 21 )

By using expressions (7.11), the set of linear differential equations with
constant coefficients (7.10) can be written in a more compact manner,
introducing the state vector X.

Then, the set of equations may be written in matrix form as

x=A,x+Bc¢
where

x the state vector

Ay the stability derivatives matrix
B  the control matrix

c the control vector
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and also:
u X’? 0 X; _g u GOMR ;]
wl |0 Z2 0 0w . Zy  Zp | Our
q M) M) M) 0 | g Mg My | B
0, 0 0 1 0]9, 0 0

Now, we assume that 8z = 0, B; = 0. The characteristic polynomial ¢(4)
is equal to det(A2 I - A,). Therefore the characteristic equation is obtained
expanding the following determinant:

p(A)=detdI1-Ay)=0

where I is the identity matrix, order 4x4.

Being
A 0 0 O
04 00
Al=
0 0 4 0
0 0 0 4
then, we have
A-X, 0  -X]

0 A-Z° 0
-M, -M) A-M,
0 0 -1

=0 (7.12a)

» O O 09

Expanding the determinant produces the following characteristic equa-
tion:

A +BX +CXP +DA+E=0 (7.12b)

where

A=1
B=-X)-Z,-M,
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C=Z)(X, +M])
0
D=M,g
E=-Z,M,g
The expressions for the terms C and D are obtained considering that
_ 70,10 0 0340 0 10
[C=Z,(X,+M)+ XM, -M, X,]
[D=M0g~Z%(X°M? ~M°X?)]
and, for the helicopter with a single main rotor, note that:
[XyM] —M)X)=0]

Now, in order to solve the characteristic Equation (7.12b), first of all the
values of the stability derivatives involved shall be calculated.

Then, the characteristic Equation (7.12b) has four roots: A1, 42, 43, A4,
eigenvalues of matrix Ay and they may be real or complex conjugate.
Therefore, the generic root A has the form 4 =# + iw.

The general solution for each dependent variable (for example, we choose
u) is of the following type:

p p p
u=ae” +a,e® +ae™ +ae™

where ai, a», as, as are constant that can be evaluated by the initial
conditions. Consequently, for stability verification tasks, if the real roots are
negative, then the perturbation is damped; vice versa if the real roots are
positive, then the perturbed motion results a divergence. In case of complex
roots, if the real part is negative, then the motion is a damped oscillation;
vice versa, if the real part is positive, then the motion is a divergent
oscillation (Figure 7.5).

In hover, the typical case for a single main rotor helicopter is dominated
by a couple of real roots and a couple of complex conjugate roots.
Real roots are related to very damped motions (heavily damped subsidence)
with a pure convergence, while the complex roots configure a dynamically
unstable motion, with increasing amplitude oscillations.

To understand the unstable response it is necessary to remember, for
example, the response of rotor to a forward speed disturbance:
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the rotor tilts backwards, producing a nose up attitude of the helicopter.
Then, a backward motion is generated and, now, the rotor tilts forwards
causing a nose down attitude of the helicopter. We immediately understand
that the backward motion is stopped, but a forward motion is starting, so the
phenomenon restarts in a manner that is divergent and unstable.

In this case, the meaningful stability derivative is OM/0g, and the designer
shall consider in detail this derivative in order to attenuate the unstable
motion.

A subsidence A divergence
(real root < 0) (real root > 0)
1
1
|
0 fha[f time 0 .
time
damped oscillation divergent oscillation
(complex root, real part < 0) (complex root, real part > 0)

»
»

-t
1
|
h
'

1
1
: tdouble

1
'€ - =>
T, period

Figure 7.5 Evolutions of perturbed motion

Generally, for calculation of the oscillation frequency, the second equa-
tion of the set of Equations (7.10) is considered negligible, because the
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described motion does not involve relevant changes in altitude.
Consequently, considering the first equation and the third equation, we can
write the characteristic equation that provides the oscillation frequency:

_ 0
o | gﬂolu
ML]

7.6.1.2.  The stability derivatives My and M, in hover

In hover, the only contribution that cannot be neglected for the calculation of
the derivative OM/0q is produced by the main rotor. Therefore, considering
the parameters in Figure 5.2b (Chapter 5), we have:

M = (M ) = 5_M = a—Z -h, —81 -h, (for rotor with hinge offset &5 ~ 0)
q MR pg &g oq
or
Mq — (Mq )MR _oM _oZ . ox b+ LMMR 7&115 (for hingeless rotor)

o o " o 7 dag o

These expressions may be simplified remembering that 0Z/0q =~ 0 in hover.
In a similar manner, we have:

M = (Mu )MR = aﬂ = _aﬁ -h (for rotor with hinge offset Eg R~ 0)

u au au z

or
oM __ X . dM,, da

u )MR au au z dals

(for hingeless rotor)

considering that, in hovering flight, 6Z/0u = 0.
To estimate the previous terms, we have to consider that



268 Theory of helicopter flight

7.6.1.3  Approximate calculation of longitudinal modes in hovering flight
for a medium helicopter

In order to illustrate the previous theory, we will study the approximate con-
trol fixed response in hovering flight at sea level of a typical medium heli-
copter (DL= 350 N/m?;, main rotor: four-bladed rotor, radius R = 6.6 m,
chord ¢ = 0.4 m; tail rotor: radius R, = 1.0 m; /,, = 8.1 m). Now, let us con-
sider that the applicable stability derivatives assume the values shown in the
matrix Ay as follows:

-0.0200 0  0.8500 -9.8066
A< 0 -0300 0 0
7100500 0.065 -1700 0
0 0 1 0

Therefore, the characteristic equation (7.12b) becomes:
A +(2.020004 +(0.516)42 +(0.4903) 1 +(0.1471) =0
The roots of the characteristic equation above, or eigenvalues, are:
21 =-0.300, J2=-1.861, J34=10.0707 £ 0.5083:

Therefore, the two negative real roots represent two stable responses with a
thar (time to half, or time during which the disturbance quantity will half
itself) equal to:

0.693
= W
and:
0.693  0.693
Lhay= |n| = |_ 0.30q =2.31seconds (for i),
0.693  0.693
Latf= E = 1861 =0.37seconds (for 12)

The complex roots A3 and A4 (that have a positive real parts) imply an
unstable oscillatory mode (divergent oscillation) with the following period 7,
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time to double amplitude fsuse, undamped natural frequency w, damping
ratio ¢, and number of cycles to double amplitude Niousie:

= 2_72- = 2z =12.4 seconds, b doubl= @ = w =9.8seconds
® 05083 W 0.0707
w, =\n* + &> =0.513rads, gz_—”z%;mzo.ms,
[1 _ 2
Ndoublezw é/ :07895
2r ¢
Im (1)
0.5083 _ L A-
:0.0707 Re (1)
A

Figure 7.6 Roots 43 and A4 on complex plane

7.6.1.4. The characteristic roots on complex plane

In the preceding example of calculation we obtained the numerical parame-
ters related to each root, real or complex. From a general standpoint, now it
is useful to show the relationships among 7, @, and ¢ in the complex plane.
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Figure 7.7 shows a generic root 4 = n + iw in the left half plane (therefore, n
is negative):

A
The left half plane: stable The right half plane: unstable
Im (1)
Period T
increasing
I
_____________ | _ 1
i A !
1 I
: Wy : 1
i — 0.5 !
: 'o = (1 -0 !
L0 : \%
1
: 1
: Y > Re (1)
€-=—===-=-=-== >
l’l = - Cwn
A
1
1
1
° :
1

Figure 7.7 Relationships among parameters on complex plane

7.6.2. Lateral-directional dynamic stability in hovering flight

Now, for the lateral-directional motion, we saw that the applicable set of
equations is:

w., .
?G(V)=Y+Wc[q)d]
bl o~ =L
Al.—pl_=N

By substituting the expressions of perturbations into equations above, we
obtain:
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w. .

SOOI XY+ L p+ Er+Y, 4, =T, 6,

pl,—il_ =Ly+Lp+Lr+L,4+L,6, (7.13)
il —pl :va+Npp+Nrr+NAlAl +N6,”¢9”

Now, let us divide the stability derivatives of the first equation by the mass
M, of the helicopter; thus, we obtain:

Y£= L, yl=—t—, Y'= Y, , Y= Yy , Yé’:i (7.14a)
Mheli Mheli Mheli l Mheli " heli

Considering the second and the third equations of the set (7.13), in order
to write the group of equations in the required matrix form, let us calculate
the expression of the term /.. from the third equation; we have:

2
I.7= ? P+%va+ i Nﬂ’*% Nr”][iNAlAl +%N@ﬁ”

By substituting into the second equation, we obtain:

2.1 1 1 1
([ —2E2)="2EZNv+-2N p+-2ENr+--N,A4
p ( X [z) Iz v IZ pp ]Z r IZ A4

+ ]]xz N‘gx,-gtr + va + Lpp + er + LAI Al + L‘gf"etr

z

Multiplying by /. and after appropriate rearranging of terms, finally, is:

Xz v Xz r

 _UeN,+LL) (N, +LL) (N, +IL)
(11, ~17) (I, ~13) (I, ~13)

([szA1+[zLA1) U.N, +1.L,)
+ 3 1 A] + tr 5 tr .
(Ix[z _[xz) ([x[z _[xz)

By applying a similar procedure to the third equation, we can calculate
the expression for 7.

Therefore, in order to write the previous expressions in a suitable form,
let us use the following relations:
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LO ZIZ(Lp)+Ixz(Np) :
g lez_lyfz

LOZIZ(Lr)+1xz(Nr) .
' [xlz_l)?z ’

LOZIZ(LV)+IXZ(NV) .
' [xlz_lfz ’

LO — IZ(LA1)+IXZ(NA1) .
4 Ix[z_l)?z

b

L() — IZ(L@,_)+]xz(N49tr) A
6’” lez_l)gz

b

LN )+I(L,)

NO
Ix]z _])?Z

p

NO — [x(Nr)+[xz(Lr)

' IXIZ - I)?Z
NO — [x(Nv) +1xz(Lv)
' I)CIZ - I)?Z

(7.14b)
NO = I.(N)+I1.(L,)

g [XIZ - [)?Z

N() — Ix(NB,r) +]xz(L0t,)
gtr [XIZ _I.Xsz

As in the longitudinal motion we just treated, let us rewrite the group of
Equations (7.13) by expressions (7.14a) and (7.14b); then using the matrix

notation, we have:

vl g o] [
Pl\L L, L 0O p | |L L,
PO=|NDON) ND O O) o+ NG ONG 9‘}
o, o 1 0 0 o0|®,] | O O0["
o 0o 1 0 0|¥] |0 o]

Expanding the following determinant

e S A
-L, A-L, -L} 0 0
-N) -N, A-N} 0 0/=0
0 -1 0 A0
0 0 -1 0 A

leads to the characteristic equation:

AX + B +CLP + DV +EL+F=0
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where

A=1
B=-N,-L, -Y,
C=LN) -N)L)+Y'N} +Y L) - L)Y) - N)Y?
0/70A70 70 A70 0,70 A70 0,0 070 070
D:Yv (Ler _Ler)+Lv(Yer _NpYr _g)+Nv(Yr Lp _Yer)
E=LN)g-L)N)g
F=0
In this case, there are five roots; in detail, one is relative toA =0 and

represents a neutral condition of stability (heading mode); other four roots,
typically, are as follows:

— two real roots, relative to stable motions (one root
produces a rolling damped motion, the other one
produces a yawing damped motion);
— two complex conjugate roots, that produce dynamically
unstable oscillation.
The rolling damped mode is characterized by the derivative L,, while the
yaw stable mode by the derivative N,.

The unstable oscillation represents changes in helicopter sideways speed and
in bank angle.

7.7. Dynamic Stability in forward flight
7.7.1. Longitudinal dynamic stability in forward flight

In this flight condition, the set of equations is:

WG .

26 i+ V,0q) = X ~W,[0, 050, ]
g

Y (jo—1,4q)= 21,0, 5in0,)
g

gl, =M
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Introducing the stability derivatives, the equations become:
w, . W,

——= W) -W;[0,c080, ]+ X u+X w+ (Xq ——=V)q = _XQMRQMR _XBIBI
g g '

—VZG(W) —Ws(®,sen®y) + Zu+7Z w+(Z, +VZG V)= —ZQWRHMR —Zy B,

—ql,+Mu+M w+Mw+M,qg=-M, 6,,—M;B

Also in this case, the derivative OM/ow can be neglected to simplify the
calculation and, therefore, can be removed from the third equation.
Using the expressions (7.11), the above set of equations may be written in

matrix notation (using a similar procedure just applied to hovering flight
condition):

i X, X, X)-V, —gcos@, | u X5 Xi
W | Z) Z) Z)+V, -—gsin® | w N Zy Zy {%}
g | |M) M) M 0 q | My M, | B
0, 0 0 1 0 0, 0 0

Now, we study the fixed control response (natural modes of motion) of the
helicopter; therefore, we need to expand the following determinant:

A-X,] -X, -X)+V, gcos®,
~Z, A-Z, -Z]-V, gsin®| _

-M, -M)  A-M] 0 0
0 0 -1 A
that leads finally to the characteristic equation
AV +BP +CFP +DA+E=0 (7.15)
where
A=1

B=-M])-Z,-X,
_ 0 y-0 0340 0~0 0 04 40 00 010
C=—M,X, +Z\M] —MZ) — MV, + XM, +X,Z) - 2, X,
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+ MV,
D=M,gcos®, +M,gsin®@, — M, X,V +M,Z) X] ~M)ZV_,+Z)MV.,
03 70 v0 0 y0-~0 0703 70 04 700 03 70 0y 037 40
~Z)M)X) —M{XZ) - XOZOM) + X)M)ZY) + XoM Vo + Z0 XM

E=(M'X. - X’M?)gsin®, +(Z'M° —M?Z°)g cos®,

Before analyzing the roots of the characteristic equation, it shall be noted
that, generally, the values of the stability derivatives can vary throughout the
flight envelope of the helicopter, from hovering to high-speed forward flight.
Consequently, the trend of the stability derivatives has an impact on the
typology of the roots so that the characteristic equation could have two pairs
of complex conjugate roots or four real roots.

In the case of two pairs of complex conjugate roots, a response similar to
that of fixed-wing aircraft is obtained, with a pair of complex roots that
corresponds to an oscillatory motion, with a long period, defined as phogoid
mode (Figure 7.8).

altitude A
Period (typically, 20 seconds)
€ ——— >
<
g - PAREE f ,\
N
time

Figure 7.8 Phogoid mode
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The long period oscillatory motion, the phugoid mode, is characterized
by changes in altitude and speed, with an angle of attack almost constant.

In order to understand the motion represented, let us assume that,
following a disturbance, the altitude increases: now, during the climb, a
decrease in speed and the action produced by the weight take the helicopter
to descend. Decreasing the altitude, the speed and the rotor thrust increase so
that the oscillation restarts once again, and generally the motion is unstable.

For this case, the very relevant stability derivatives are M, , M 3 M 3 ,Z,? .

7.7.1.1.  Approximate calculation of longitudinal modes in forward level
flight for a medium helicopter

For example, we will study the approximate control fixed response of a
utility helicopter (see also calculation in Section 7.6.1.3) in straight and level

flight at /=100 knots, sea level, where we assume that the characteristic
equation (7.15) becomes:

A +(3.340008 +(0.4333) 4% +(0.2205 4 + (0.2414) =0
The roots of the characteristic equation above, or eigenvalues, are:
A1 =-0.4266 , A2 =-3.2195, As4=0.1530 + 0.3903;

Therefore, in this case we have two negative real roots which represent two
stable responses with a .y equal to:

©0.693
Lhayy= W
and:
0.693 0.693
Lhay= E = 04264 =1.6seconds (for 1),
0.693 0.693
Lhay= |n| = |_ 3219 q =0.2seconds (for A»)

From results above, we see that the stable modes are short-period responses.
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The complex roots A3 and A4 (that have a positive real parts) imply an
unstable mode (the phugoid) with the following period 7, time to double
amplitude Zsusre, undamped natural frequency w, and damping ratio {:

_27%_ 2T 161 seconds,
© 03903
0.693  0.693

t =——"=__""" =4 5seconds
@Ol 0.1530

o, =\n*> + ®* =0.419radss,

pon_Z01530_ oo
0.419

n

0.693 y/1—¢2 02806

Ndouble = 7 |é/|

Example of longitudinal root locus plot as a function of forward flight speed
In Sections 7.6.1.3 and 7.7.1.1 we studied the longitudinal natural modes, in
hovering flight and at /= 100 knots respectively, of a medium reference
helicopter with a hingeless rotor, where we assumed also uncoupled longitu-
dinal and lateral-directional motions. Again, we remember that this a critical
assumption for the helicopter, because it is characterized by an asymmetric
configuration. The fully coupled equations can show significant different
results both in longitudinal and lateral-directional eigenvalues with respect to
results provided by the analysis of the uncoupled set, from the hovering to
the forward flight. This must be always considered when a rigorous analysis
shall be performed.
In particular, the following derivatives, which are neglected in the uncoupled
analysis, shall be considered:
Ly (roll moment due to longitudinal velocity), L, (roll moment due to verti-
cal velocity), L, (roll moment due to pitch rate), M, (pitch moment due to the
lateral velocity), M, (pitch moment due to the roll rate), N, (yaw moment
due to the vertical velocity), and the other control derivatives.

Figure 7.9 illustrates the influence of the forward speed, from hovering to
forward flight at /=100 knots at sea level, on the longitudinal eigenvalues
for the helicopter used for calculation.
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w
A Roots for hovering flight (rad/s)

0.5 -t.
Phugoid

Il Roots for level flight at ¥=100 knots

Heavy
Subsidence subsidence
= . = : : A ;
3.0 2.5 2.0 1.5 1.0 0.5 0 0.5 n (1/s)

Figure 7.9  Example of longitudinal root locus as a function of forward speed

7.1.2. Lateral-directional dynamic stability in forward flight
In a similar manner, the set of equations for lateral-directional flight con-
dition is:
Ws ..
—FVAVor =Vop) =Y + W5[®, cos® ]
g

pl,—7l_ =L
i~ pl,.=N



VIL. Stability and control, introduction to helicopter flight dynamics 279

By substituting the expressions for perturbations, the equations above
become:

D6 5V =V, p) =W, [®, cOSO, |+ Xy + Y, p+ Yr +Y, 4, +Y, 0,
. ,
pl -7l :va+Lpp+er+LAlA1 +L9”0tr

ﬂz —p]xz :va+Npp+Nrr+NA]A1 +N9”9tr

and then:

e 5V, —V,up) + W, [®, COSO, 1+ Yv+Y, p+ Yr ==Y, 4, Y, 0,
g ,

-pl +il +Lyv+L,p+Lr=-L,4-L,0,

-, +pl,+Nyv+N,p+Nr=-N,4-N,0,

By using expressions (7.14a) and (7.14b) and by means of the procedure

applied to the previous cases, we can rewrite the equations above, and the
matrix Ay becomes:

Y)Y 4V, Vot geos®, 0
r L L 0 0
A,=|N) N, N? 0 0
0 1 0 0 0
| 0 0 1 0 0
Therefore, we obtain the following determinant:
A=Y, _Y;?_Vzo V=Y —gcos®, 0
. by A-L -0 0 0
-N? -N, A—N? 0 0/=0
0 -1 0 A 0
0 0 -1 0 A

and finally, we have the characteristic equation
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AP + B +CX + DA + EA+F =0
where:
A=1
B=-Y)-L) —N;
C=L)N)—=N)L)+ YN, +Y L =LY, —=N)Y) + N V,, —L)V.,
D =-L0gcos®, ~ YL, + YULING + YOLINS — YOLOND ~ YOLONY
+Y LN, + (LN = LN W + (LN = LN W
E=(L,N; —LN;)g cos®,
F=0

As in the hover, the characteristic equation has one root (1=0) relative to

a neutral condition. Then, generally it presents other two real roots and two
complex roots, as follows:

— a rolling damped motion (the roll mode) and a spiral
motion (the spiral mode) correspond to the two real roots;

— a lateral-directional oscillation, LDO (therefore, an oscilla-
tion in roll and in yaw, with a pitching), called ‘dutch-roll’,
corresponds to the pair of complex roots, similar to the mo-
tion defined for the fixed wing aircraft.

Figure 7.10  Dutch-roll oscillation
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Example of lateral-directional root locus plot as a function of forward flight
speed

Figure 7.11 illustrates the typical influence of the forward speed, from the

hovering flight to high speed flight, on the lateral-directional eigenvalues for
a medium helicopter.

Im ()

A Roots for hovering flight

H Roots for level flight at ¥=140 knots LDO (Dutch-roll)

) Spiral
Roll subsidence subsidence
A k-
0 Re(4) +

Figure 7.11 Example of lateral-directional root locus as a function of forward speed
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7.8. Helicopter control
7.8.1. Stability, control and flying qualities

The study of helicopter control is based on the analysis of the whole aircraft
response following the application of one or more control inputs by the ‘hu-
man’ pilot or by an automatic system (auto-pilot).

Through the flight controls, the pilot shall perform a flight manoeuvre or
shall compensate adequately an atmospheric disturbance (as it can be a gust).
Then, it is necessary to verify the helicopter response in the entire spectrum
of manoeuvre and for each aircraft configuration.

Moreover, it shall be noted that stability and manoeuvrability (capability
of rapid response to a pilot action) are substantially opposite characteristics,
because an aircraft with high stability ‘suffers’ from low manoeuvrability.
From this standpoint, required stability and manoeuvrability will vary with
the helicopter type and with the flight mission requirements.

Generally, the reference specifications for stability and control require-
ments of V/STOL aircraft define various classes versus weights and ma-
noeuvrability (light, heavy, low/medium and high manoeuvrability).

Typically, the specifications define also the flying qualities in terms of
defined levels, related to the capability to complete the flight mission.

For example, typical levels are described as follows:

Level 1 flying qualities are adequate

Level 2 flying qualities are adequate, but
increment in pilot work load is
required

Level 3 flying  qualities  allow  the

helicopter to fly safely, but intense
pilot work load is required
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7.8.2.  Longitudinal control in hovering flight; one degree of freedom
approach

The application of a control by the pilot requires (in general, both in
hovering and in forward flight) an additional action of compensation through
other controls in order to perform correctly a manoeuvre (in some cases, also
an appropriate mix of controls to minimize the secondary effects is present).
For example, a change in collective pitch in hover generates, of course, a
change in rotor thrust (the primary effect), but causes also a change in rotor
torque that shall be counteracted acting through the pedals in order to
maintain the flight direction.

After this introduction (to be always present for an entire and advanced
analysis), we will obtain very useful information also by simplified models.
In particular, in the pages that follow we will analyze some cases of helicop-
ter response by an approach with only one degree of freedom.

Therefore, we can use Equations (7.10) with the application of the only
one forcing B; and with the assumption of one degree of freedom about the
pitching axis. Then, in order to analyze the helicopter attitude, the third
equation of (7.10) can be written as:

~gl,+M,g=-M, B,

Dividing by /,, using the normalized notation adopted for the relation-
ships (7.11), and going into Laplace domain (Appendix C), we obtain:

49 __"Tn (7.16)

The expression (7.16) is the transfer function of the pitch rate ¢ due to the
longitudinal cyclic pitch B;.

Fixing the forcing changes and performing the inverse transformation, fi-
nally we have the relationship between ¢ and B; in time domain.
In order to complete the treatment, note that

_OM _dM,, Cas _( OX h
% 0B  dag 0B \@B ), -

Now, let us consider the case where a vertical gust of magnitude wgyy is
developed; then, consider the second equation of the group of Equations
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(7.10), and by introducing the disturbance wgy and taking into account only
the one degree of freedom to the vertical movement, we obtain:

—%(W)+ Zw(w+ Wgust): 0

and finally

. 0 0
w— ZWW = wagust
As in the previous case, if we know the changes in disturbance, then we
can calculate the approximate response of the system by means of the
described methods.
Note that it is:

7.8.3. Lateral-directional control in hovering flight; one degree of freedom
approach

If we consider the forcing 6, and only the degree of freedom about the
yawing axis, the third equation of set (7.13) can be written as:

rl,=Nr+ Ngtﬂtr
obtaining

NO
Lo (7.16)
0, (s—N,)

By using the previous assumption, the relation (7.16) describes the
response following the forcing (collective control input for the tail rotor).

In particular, if we assume that the forcing changes according to the
following rule:
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0 t<0

6,.()= (step function, step change input)
estustep (t ) t>0

and then

N,
) _ No |, i (for ¢ > 0).
N,





