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Abstract

Every pedestrian forms an influence area of variable extent at the emergence of an interaction with another
pedestrian. The characteristics of this influence area are usually discussed in the framework of pedestrian
simulation models. The present work addresses the statistical modeling of this influence area with the aim to
reveal the critical microscopic factors that may affect its type and extent using a multivariate structural
equation framework. The analysis focuses on overtaking patterns in unidirectional and bi-directional normal
crowd flow conditions based on pedestrians’ trajectories derived from video recordings at a highly visited
metro station of Athens (Greece). Findings reveal asymmetries between the rear and front part of the
influence area. Moreover, both the speed difference between interacting pedestrians and the type of flow
(unidirectional or bi-directional) significantly affect the observed asymentries.

Keywords — pedestrian flow, influence area, microscopic traffic analysis, structural equation modeling

1. Introduction

Large transportation infrastructures usually accommodate a significant number of visitors on a
daily basis. Thus, they should fulfil specific requirements related to safety and comfort. Safety
and comfort require the minimization of interactions between pedestrians. In typical crowd flow
conditions, when a pedestrian reaches the influence area of a lead pedestrian - the area around a
pedestrian where interacting forces with the rest of pedestrians emerge-, several repulsive forces
drive the pedestrian to overtake or decelerate to avoid the lead pedestrian [1].

The literature on the complexity of crowd flows is extensive. Several models have been
considered, such as regression models [2], queuing models [3], route choice models [4], discrete
choice models [5, 6], heuristics-based modeling [7], game theoretic models [8], macroscopic
models [9, 10], and microscopic simulation approaches [11-18]. The most popular models are the
social force models [1, 19], and the agent-based models [20-22].

The spatial patterns that emerge during overtaking conditions have been rarely researched and
included in the modelling [14], [19], [22, 23]. Pedestrians navigate through traffic with speeds of
ranging magnitude and variable headways. Those who choose higher speeds, at some point, will
have to overtake those with lower speeds in order to maintain their desired speed or decelerate to
avoid collision. An overtaking manoeuvre may occur when a specific pedestrian deviates from his
original path, which is determined by the minimum distance between his origin and the desired
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destination. In contrast to roadway traffic, where overtaking is determined by the road geometry
and the opposing traffic, if any [24], overtaking in crowd flows can emerge in numerous ways
depending on the desired destination and the path of “least effort”, in time or space [1]. Moreover,
the reaction times are much lower than in the case of vehicles.

The pedestrian overtaking behavior is rarely statistically modeled. Thompson et al. [23]
analysed the possibility to overtake by defining the direction angles from a lead pedestrian and the
route choice based on the minimum deviation from the original, optimal direction. Yuen and Lee
[25] proposed a modified social force model to represent the overtaking behavior of pedestrians in
unidirectional normal crowd flow conditions; modifications refer to equations that describe the
direction and magnitude of overtaking. Ji et al. [26] extended Yuen and Lee [25] work by
introducing the pedestrians’ anisotropy, a term to describe the effect of the pedestrian behind the
subject pedestrian. Hussein and Sayed [22] introduced an agent based model with complex
behavioural rules to describe the pedestrian interactions in uni-directional (overtaking) and bi-
directional (collision avoidance) flow conditions.

Developing statistical models to explain crowd flow complexity emerging from pedestrians’
interactions based on real world collected data can increase the understanding of the behavioral
dynamics that may govern crowd flows under different flow conditions, walking environments
and transportation facilities. This understanding may be used to improve the parametrization of
existing simulation models, assess the level of service of existing transportation facilities and
improve their design and safety. To this end, the present work focuses on the statistical modeling
of the influence area of a pedestrian in unidirectional and bi-directional normal crowd flow
conditions at the emergence of an interaction (overtaking) with an adjacent pedestrian. Structural
equation models are developed to reveal the critical factors that may influence the asymmetrical
characteristics of a pedestrian’s influence area. Data are derived using computer vision and reflect
flow conditions near the entrance of a highly visited metro station in the centre of Athens
(Greece).

2. Pedestrian influence area

An important feature of crowd flow modeling is the influence area formed around a
pedestrian. In literature, this area is described as being square [26], [27], cyclic or elliptical [1],
[28]. The last is the prevailing form and is used in the popular social force model. The influence
area dictates the manner a pedestrian maneuvers through crowd flows and is the reason why the
overtaking maneuver may occur. When a pedestrian reaches the influence area of a lead
pedestrian, the interaction between them - usually described as the repulsive force - will force the
pedestrian to overtake. The overtaking maneuver will end when the pedestrian departs from the
influence area of the lead pedestrian.

Most existing research papers treat the influence area as being symmetrical. Although this
approach may reduce the complexity of the modeling, it provides an unrealistic behavior of
pedestrians’ interactions. Recent evidence has demonstrated the importance of both the lateral and
longitudinal spatial distance between interacting pedestrians that are correlated to walking speeds
[29]. Campanella et al. [30] suggest that the influence area in front of a pedestrian is different
from the one behind him; empirical findings of the specific study reveal that the pedestrians react
stronger to events in front of them, as well as those that occur closer to their axis of movement.
Daamen et al. [31] used empirical data from different flow configurations, population
characteristics and traffic conditions from various experiments to calibrate pedestrian simulation
models.
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2.1. Modeling approach

Every pedestrian produces an influence area of variable extent around him. This influence area
impacts the surrounding pedestrians and affects their way of moving, for example the way an
upstream pedestrian will overtake the subject pedestrian to maintain his desired speed. Let this
influence area be asymmetrical. Moreover, let the “true” spatial extent of this influence area be
unknown or difficult to measure (latent), yet, identified by the major semi-axes of two ellipses -
rear and front - formed by the overtaking trajectories of other pedestrians. Figure 1 graphically
depicts the above conditions; the dark arrow represents the direction of movement for the subject
pedestrian and the dashed line represents the trajectories of the pedestrian who overtakes the
subject pedestrian. This asymmetrical influence area is influenced by various traffic and geometry
related characteristics.

In the present paper, the above-described problem is modeled using a Multiple Indicators-
Multiple Causes (MIMIC) latent variable model a special class of Structural Equation Models
(SEM). SEM has been previously applied to transit system quality of service analysis [32, 33],
secondary incident traffic influence assessment [34], travel behavior modeling [35], driver’s
behavior modeling [36] and public acceptability analysis of new technologies for traffic
management [37]. SEM models can be considered as a generalized case of multivariate classical
statistical models and suffer from similar constraints as classical statistical models, but
outperform similar techniques due to their ability to treat auto-correlated errors, non-normal data
and latent variables [38].

SEMs consist of two components: a measurement model, which defines the relations between
a latent variable and its indicators and a structural model, which specifies the casual relationships
among latent variables and explains the casual effects [38]. The MIMIC model considers the
latent variable 7 to be scalar and relates the vector of indicators y and the observed exogenous
variables X that cause 77 by the following system of equations:

n=Ix+e¢
y=An+¢’
where I' and A are matrices of unknown parameters to be estimated and & and ¢ are the error

(M

terms.
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Fig. 1 — Visualization of principle of combined SPF, where intersections are considered only
in terms of their frequency (1); segment-only SPF (2a); and intersection SPF (2b)
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Various approaches have been used to estimate SEM models; the most popular is the
Maximum Likelihood method. Golob [35] provides a thorough literature review on the estimation
methods with emphasis on their relation to the sample size.

A critical step in SEM modeling is the assessment of the model’s fit. Due to the inherent
complexity of such models, a tedious evaluation should be followed in order to assure the model’s
fit. This includes measures to select the best modeling structure, such as the Akaike's Information
Criterion (AIC) or Bayesian information criterion (BIC), as well as likelihood ratio tests for
comparing the proposed model to the saturated one (the model that fits the covariances perfectly)
and baseline models (model that includes the means and variances of all observed variables plus
the covariances of all observed exogenous variables). Other means for model evaluation include
the Root Mean Squared Error of Approximation (RMSEA) along with the probability of RMSEA
being below 0.05, the Standardized Root Mean Squared Residual (SRMR) and the Coefficient of
Determination (CD) of the various models. A model fits the real data adequately, if the lower
bound of the 90% CI of RMSEA is below 0.05 and is poor if the upper bound is above 0.10 [39].
A good fit provides SRMR less than 0.08 [40]. CD is similar to R? for the entire model.

Finally, a supplementary issue in statistical modeling — especially when complex modeling
structures are involved - is overfitting. Overfitting occurs when models have proportionally larger
number of parameters in relation to the sample size. The outcome is having models that may
replicate in detail the characteristics of the data they are asked to model, but cannot efficiently
generalize on out-of-sample data of the same phenomenon [41]. Various rule-of-thumb
approaches exist in literature as remedies against developing erroneous models [42]. The simplest
of all are: i. to randomly split the sample and use the largest part for model building and
evaluation and the other for testing (holdout method), and ii. to estimate n times the model leaving
each time a data point for validation (leave-one-out cross validation approach). These approaches
are very popular in machine learning, but rarely used in statistical modeling [41].

2.2. Video-based pedestrian flow experiment

Video-based data collection approaches are very popular in pedestrian traffic flow analysis
and modeling [43-45]. This is mainly because video recordings — regardless of some major
limitations that may be alleviated through proper camera settings and video post processing - are a
safe and non-disruptive approach to study pedestrians’ behavior and crowd flow dynamics [45].
The study area is approximately 150 square meters and is located outside a highly visited Metro
station (Figure 2). In the study area, high pedestrian flows - both unidirectional and bi-directional
— are reported and a limited number of stationary obstacles exist.

Fig. 2 — Study area. In light grey the area where pedestrian trajectories are recorded
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For the experiment, video recording took place at a pedestrian bridge adjacent to the study
area. The camera was placed approximately 8 meters higher than the study area. The collected
data include video streams from the morning peak period (8:00 a.m. — 12:00 a.m.) for one week.
From the video streams, pedestrian trajectories were extracted by a semi-automated process using
a trajectory extraction system [46]. Specifically, each pedestrian’s location on screen was be
converted into real-world coordinates by using the two equations that follow:

X _ al xscreen + a2y screen + a}
real ~
a4xscreen + aSy screen + 1 (2)
_ DX sereon T A1 Y sereen T %
YVrear =

a4xscreen + aS yscreen +1

where (Xreas,)rear) 1 the real-world coordinate, (XscreenVscreen) 18 the video image coordinate and
oy to ag are coefficients that were estimated based on the coordinates of four reference points in
the real world. In the video detection process, the frame rate was set to 25 frames per second,
which is equal to 0.04 seconds time interval. Since the video frame rate were predefined, the real
position of the pedestrian per frame is known, which allows the researcher to extract all necessary
kinematic characteristics. For example, speed is calculated as the derivative of the position with
respect to time, while speed difference is obtained by comparing speed changes per time intervals.
The extracted trajectories depicted 5 origin/destination points that - in turn - form 6 routes of
pedestrian flow (either unidirectional or bidirectional). Some examples of extracted trajectories of
the subject pedestrian are seen in Figure 3.

Overall 804 cases of pedestrians’ interactions that included an overtaking are considered in the
further statistical analysis. Table 1 summarizes the variables that are considered in modeling. The
variables spatial rear and spatial front describe the asymmetric influence area around a
pedestrian who is been overtaken. The first is calculated at the beginning of the passing of the
subject pedestrian (pedestrian b), while the second is calculated at the end of the overtaking
attempt (Figure 1). The variable s a-s b denotes the speed difference between two interacting
pedestrians and takes on positive values. This difference is calculated at the beginning of an
overtaking attempt.

3. Empirical microscopic features of pedestrian interactions

The study of the microscopic features of pedestrian flows is important for the development
and calibration of efficient car following models [28].

-

e 5 | 4
Fig. 3 — Examples of pedestrian trajectories that are recorded

-9



Advances in Transportation Studies: an international Journal Section A 44 (2018)

Variable

Tab. 1 — Description of variables

Description

Continuous
spatial _rear

spatial front

The major semi-axis of the elliptical influence area at the back (unidirectional
flow) or the front (bi-directional flow) of pedestrian been overtaken
The major semi-axis of the elliptical influence area at the front (unidirectional
flow) or the back (bi-directional flow) of pedestrian been overtaken

speed a Speed of subject pedestrian

speed b Speed of pedestrian been overtaken

(s_a)-(s_b) Speed difference between pedestrian a and pedestrian b at the beginning of an
overtaking attempt

Categorical

comp Subject pedestrian grouping (0 for single pedestrian, 1: otherwise)

dir The direction of travel of the interacting pedestrian (0: bi-directional flow, 1:
otherwise)

stationary Pedestrian been overtaken (1: the pedestrian b has zero speed, 0: otherwise)

obs right The existence of obstacle at the right of the subject pedestrian ((1: obstacle in
less than 6 m from the subject pedestrian, 0: otherwise)

obs left The existence of obstacle at the left of the subject pedestrian (1: obstacle in
less than 6 m from the subject pedestrian, 0: otherwise)

gender The gender (1: male, 0: female)

This section focuses on speed and spacing at the emergence of an interaction between two
pedestrians (unidirectional flow) or an opposing pedestrian (bi-directional flow). The spacing is
the calculated rear major semi-axis for pedestrian a and front major semi-axis for pedestrian b.

Figure 4 graphically depicts the continuous variables through their quartiles (1% quartile,
median and 3" quartile). In x- axis the variables; names are depicted, whereas in y-axis is the
value of each variable (in meters for spatial front and spatial rear variables and m/sec for
speeds). The single points in speed _a variable represent outliers falling outside the range of
+1.5IQR, where IQR is the interquartile range. As can be observed, on average, spatial_rear takes
on higher values compared to those of spatial front. This means that pedestrians seem to change
their course earlier when deciding to overtake, in comparison to when they return to their original
course at the end of the overtaking maneuver. This is a first indication of the asymmetry in the

influence area of a pedestrian at the emergence of an overtaking maneuver.

1 - |
spatial_rear  spatial_front  speed_a speed_b s a-s_b

Fig. 4 — Box plot graph for the continuous variables
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Moreover, the longitudinal spacing for walking at the beginning of an overtake is smaller than
the typical longitudinal spacing for walking indicated in Fruin [47]. This may be the reflection of
cultural differences. Regarding speeds, the average speed of pedestrian a is expected to be much
higher than the one of pedestrian b, as the experiment depicts interactions during overtaking of the
pedestrian b by the pedestrian a.

The first question, which emerges, is whether speed and spacing differ with respect to the type
of flow (unidirectional or bi-directional). Figure 5 and Figure 6 demonstrate the variability in the
distributional characteristics of the rear and major semi-axis with respect to the type of flow and
whether pedestrian b is stationary or not.

stationary pedestrian inidirectional flow stationary pedestrian, bidirectional flow

15
L

. N
| / \hﬂ X

moving pedestrian, unidirectional flow moving pedestrian, bidirectional flow

0 H/.\ 6 0 /\\,‘

2 4 [

Percent

15

10

w

Rear major semi-axis (m)

Fig. 5 — Distribution of rear major semi-axis for the type of flow and the subject pedestrian motion
(pedestrian b) (the dark line depicts the normal distribution)
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Fig. 6 — Distribution of front major semi-axis for the type of flow and the subject pedestrian motion
(pedestrian b) (the dark line depicts the normal distribution)
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A non-parametric two sample Mann—Whitney U test is conducted to test the hypothesis that
speed and spacing come from the same distribution for unidirectional and bi-directional crowd
flows. Findings show that the above hypothesis can be rejected for the cases of rear and front
major semi-axes (test values z = 10.795 (p>|z| = 0.000) and z = 11.425 (p>|z] = 0.000)
respectively). For speeds, the hypothesis can be rejected for the pedestrian a (z = 3.940 (p>|z| =
0.000)), whereas the hypothesis of similar distributional characteristics for unidirectional and bi-
directional flow can be accepted for the speeds of pedestrian b (z = 1.145 (p > |z| = 0.252)). This
implies that the subject pedestrian been overtaken (pedestrian b) has similar behavior in terms of
speed in both flows. This may relate to a tactical behavior during overtaking conditions between
an active and passive partner; the active pedestrian will choose a speed at the emergence of an
overtake which may vary, whereas variations of the average speed of the passive partner (the
pedestrian b) will probably be less critical. Figure 7 and Figure 8 depict the fundamental
microscopic diagram for pedestrian a and pedestrian b.

Unidirectional flow Bi-directional flow

Spacing (m)
L ]

Speed (m/sec)

Pedestrian A

Fig. 7 — Speed-spacing relationship for pedestrian a
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Fig. 8 — Speed-spacing relationship for the subject pedestrian (pedestrian b)
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Fig. 9 — Scatter plot of rear and front major semi-axis with respect to the type of flow and the subject
pedestrian motion (pedestrian b)

Although a linear relationship between spacing and pedestrian speed has been previously
reported [48], in the specific paper, for both types of flow, no clear relationship can be observed.
A supplementary pairwise correlation analysis also shows a low linear correlation between speed
and spacing (correlation coefficient below 0.4).

Figure 9 shows the relationship between rear and front major semi-axis with respect to the
type of flow and whether the subject pedestrian (b) is stationary or not. Although the correlation
analysis shows that there exists strong linear relationship between the magnitude of rear and front
major semi-axes (correlation coefficient above 0.6), this linearity is not clear, especially in low
values of front major semi-axis. For these values, an increased scattering in the relevant rear
major semi-axis values is observed. The observed stochasticity in low values of both variables
supports the hypothesis of the asymmetrical influence area around a pedestrian when interacting
with others in overtaking conditions. Further research is needed to mathematically describe the
observed relationship.

4. Multivariate modeling of the asymmetrical influence area

A MIMIC model with a latent variable representing the pedestrian’s influence area is
constructed. It is assumed that the influence area is not symmetric and unobservable (latent), yet,
described based on two indicators; the spatial rear and the spatial front namely the major semi-
axis of two elliptical influence areas defined by the spacing of two pedestrians at the emergence
and after the completion of the overtaking respectively (Figure 1). The rest of the variables
depicted in Table 1 are considered as predictors of the asymmetrical influence area (latent
variable).
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