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SCIENTIFICA

COLLANA DIRETTA DA ENRICO COSTA ED ENRICO MASSARO

La più sublime, la più nobile tra le Fisiche scienze ella è senza dubbio l’Astronomia.
L’uomo s’innalza per mezzo di essa come al di sopra di se medesimo, e giunge a
conoscere la causa dei fenomeni più straordinari.

Giacomo L

Negli ultimi anni si è assistito ad una grande crescita di libri dedicati
alla descrizione dei primi istanti dell’universo e delle sue complicate
proprietà fisiche o alla scoperta di un sempre crescente numero di
pianeti in rotazione attorno a stelle vicine.

Gli argomenti trattati nelle ricerche astronomiche spaziano in un
panorama molto più ampio, spesso poco noto alla maggioranza dei
lettori. Molti dei risultati recenti devono essere confermati ed am-
pliati e ciò richiede un numero sempre più grande di osservazioni
e di accurate analisi dei dati così ottenuti. Accade spesso che le tec-
niche i dettagli di questi lavori non riescono ad essere descritti come
meriterebbero nel ristretto spazio di un articolo su rivista.

Questa collana si prefigge di colmare in parte questa lacuna pub-
blicando testi che forniscano agli specialisti, come a coloro che af-
frontano queste impegnative ricerche, una documentazione che ne
descriva i diversi aspetti.

Ad essi si affiancheranno anche cataloghi e raccolte di dati, un fonda-
mentale thesaurus per le ricerche astrofisiche, e testi più semplici di
livello introduttivo.

La collana si divide in due sezioni: in questa sono ospitati i volumi con
un taglio e un orientamento scientifico.
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Preface

Within the international AstroMundus path the present course has
been developed for many years. The aim is to give some guidelines in
understanding the formation and virialization of structures on galaxy
scale in the cosmological framework. To understand the cosmological
location of the topics considered, we have to look at the main features
of the Universe throughout its evolution. We immediately realize that
a fundamental epoch divides its history into two parts: the Recom-
bination epoch. Before it the Universe was engaged in structuring
itself at a microscopic level. The quarks–adrons phase transition at
about − sec after the Big–Bang or the primordial nucleosynthesis
within the first  minutes, may be considered as relevant exemplifica-
tions of that trend. After Recombination the aim of the Universe was
to structure itself at a macroscopic level, forming macro structures
from the scale of stellar clusters to that of galaxy superclusters. A very
interesting interplay exists between the micro and macro structure
formations with the complicity of cosmological expansion. Indeed as
density and temperature decrease, matter transforms from plasma
into neutral matter. A primordial mixture impossible to disintangle
moves gradually towards a decoupling of matter and radiation. As
a consequence of neutral matter formation, radiation needs much
time to interact with matter for this matter and radiation get two
different temperatures. The breaking of thermodynamical symmetry
occurs, which allows gravity to freely act on the matter without some-
thing like viscosity due to radiation. Macro structures may form. Then
the neutral atom formation allows for that of the macro ones and
within theses latests (e.g. inside stars of galaxies), the complexity of
micro–structures may increase. The contents of this book begin with
the processes of galaxy formation and then they are related to epochs
after Recombination. The natural framework used is the cosmological
one. So we need to introduce the main ingredients to deal with it. In
Chapt.  we introduce Robertson–Walker’s metric in order to obtain





 Preface

Cosmic Dynamics, based on Friedmann’s equations (Chapt. ), putting
inside the proper metric Einstein’s equations (Chapt. ). We then move
on to consider what happens during Recombination (Chapt. ) and
why the thermal capacity of radiation is so great with respect to that of
matter (Chapt. ). In Chapt.  we consider in which way a tiny matter
density perturbation may increase, according to Jeans’ mechanism
characterizing the initial linear regime of perturbations. Their statistics
are taken into account in Chapt. . As the proto–structure detaches
from Hubble flow, the necessary transition from linear to non–linear
regime has to be developed (Chapt. ). Here the “top–hat” approxima-
tion is considered. Although idealized it enables us to introduce the
main concepts. Galaxy evolution does indeed involve higly non–linear
density fluctuations. To follow them only numerical simulations are
available. Nevertheless, approximate analytic arguments work as a
compass to guide the understanding of the former ones. In Chapt.
 the virialization phase is considered after oscillations of relaxation
damped by Landau mechanism. To understand it we need to introduce
Boltzmann’s equation for collisionless particle system in the µ− phase
space. The whole, still open problem of Violent Relaxation is dealt with
in Capt. . The final purpose is to understand where galaxies land at
virialization. In other words to make an interpretation of the galaxy
Fundamental Plane (Volume ). The discovery of the Cosmic Metaplane
which has shown some common features with that of galaxies, allows
us to understand the fate for all virialized cosmological structures
from globular clusters to galaxy clusters. The present volume is mostly
devoted to theory rather than observations which are taken into wider
account in Volume . The level of the textbook corresponds to that
of a Master Degree in Astronomy and/or Astrophysics. Necessary
requirements are: basic knowledge of analytical mechanics and Rela-
tivity (at least the Special).

Padova
September, 



Chapter I

The Metric

.. Transformation by Covariance and Contravariance

... Vectors

We consider two systems of coordinates (Sokolnikoff, ):
�

X : xi = (x, x, .....xn)
Y : yi = (y, y, .....yn) (.)

and the transformation between them:

T : xi = xi(y, y, .....yn) (.)

We form the set of partial derivatives:

∂ f

∂ x
,
∂ f

∂ x
, ......

∂ f

∂ xn
(.)

of a continuously differentiable function f (x, x, .....xn) that is gradient
components of a potential function. The same vector in system Y has
components:

∂ f

∂ y
,
∂ f

∂ y
, ......

∂ f

∂ yn
(.)

linked to the previous ones by the rule for differentiation of composite
functions, namely:

∂ f

∂ yi
=
∂ f

∂ xα
∂ xα

∂ yi
(.)

. Einstein’s convention that repeated indices imply the summation, always holds.





 Galaxy dynamics

If, in general, the components of a vector in X: A(x), ....An(x), trans-
form in the system Y as:

Bi(y) =
∂ xα

∂ yi
Aα(x) (.)

we call that a law of covariant transformation and use by convenction
the subscripts for sets that transform in this manner. Another law of
transformation of vectors which is quite different from the previous
one refers to the infinitesimal displacement vector: PP, where

P ≡ P(x, x, .....xn), P ≡ P(x + dx, x + dx, .....xn + dxn) (.)

Due to differentation law we have:

dyi =
∂ yi

∂ xα
dxα; (i,α = , , ....n) (.)

which yields:

Bi(y) =
∂ yi

∂ xα
Aα(x) (.)

we call that a law of contravariant transformation and use by convenc-
tion the superscripts for sets that transform in this manner.

Meaning of covariant and contravariant components

To understand the difference, we refer to the Fig .. We make up the
basis dual (ex, ey) to the basis (ex, ey), in the following way:

ey · ex = ; ex · ey = 

Noting that: ex, ey are unit vectors and imposing:

ex · ex = → |ex||ex|cos(π/−ψ)→ |ex| =


sinψ

The same holds for: ey;



. The Metric 

— upper components: ax, ay are contravariants:

a = axex + ayey

— lower components: ax, ay are covariants:

a = axex + ayey ( in the basis dual)

“co is low”!

... Tensors

A covariant tensor of rank one is a set of quantities: A(; x), A(; x),...,
A(n; x) which transforms from the X–coordinate system into the
Y–one, according to:

B(i; y) =
∂ xα

∂ yi
A(α, x) (.)

Figure .. Contravariant (ax, ay) and covariant (ax, ay) vector components in a skew
system:ψ 6= o. In the caseψ= o they coincide. The basis dual (ex, ey) is obtained as
in the text (Hartle, ).



 Galaxy dynamics

which means (by convention):

Bi =
∂ xα

∂ yi
Aα (covariant law) (.)

Moreover a covariant tensor of rank two is a set of quantities: A(i, j; x)
which transforms from the X–coordinate system into the Y–one, ac-
cording to:

B(i, j; y) =
∂ xα

∂ yi

∂ xβ

∂ yj
A(α,β; x) (.)

which by convention will be denoted:

Bij =
∂ xα

∂ yi

∂ xβ

∂ yj
Aαβ (.)

On the contrary a set of quantities A(i; x) which transforms from the
X–coordinate system X into the Y–one, according to:

B(i; y) =
∂ yi

∂ xα
A(α; x) (.)

which by convention means:

Bi =
∂ yi

∂ xα
Aα (contravariant law) (.)

defines a contravariant tensor of rank one. Moreover for contravariant
tensor of rank two we have:

Bij =
∂ yi

∂ xα
∂ yj

∂ xβ
Aαβ (.)

In the case of a tensor which transforms according to:

Bj
i(y) =

∂ xα

∂ yi

∂ yj

∂ xβ
Aβ
α

(x) (.)

we will discuss of a mixed tensor, covariant of rank one and contravariant
of rank one. The extension to higher ranks is manifest.

. The only exception to this convention is the use of superscripts to identify the vari-
ables xi, yi, etc. These quantities do not transform according to covariant or contravariant
law (see, Sokolnikoff , p. ).


